第4课:pycharm及jupyter使用对比

1、关于pycharm的使用

讲了当我们新创建一个python文件后怎样给这个文件添加解释器。

2、关于jupyter的使用

2.1 讲了如何打开jupyter

就是在安装有torch的虚拟环境中打开jupyter

2.2 在jupyter中新创建环境

这里有一个小问题,就是我刚装上系统的时候改变了桌面的位置,所以jupyter刚开始没有这个文件夹,还原回来以后又有了。

 

 

 

 

 

3、代码在python文件中,python控制台,以及jupyter中运行的优缺点

结论:调试代码时在python控制台中好

jupyter可以更细致化的观看 

### Jupyter PyCharm 的功能差异与使用场景对比 #### 数据分析能力 Jupyter Notebook 是专为数据科学交互式计算设计的工具,其核心优势在于支持实时可视化、文档化以及代码片段的独立执行。它允许用户在一个单元格中编写代码并即时查看结果,非常适合用于探索性数据分析 (EDA)[^1]。相比之下,PyCharm 更注重于完整的项目管理复杂的 Python 应用程序开发,虽然也可以通过插件支持数据分析工作流,但在灵活性易用性上不如 Jupyter。 #### 调试与版本控制 PyCharm 提供强大的调试器内置版本控制系统,能够无缝协作完成复杂项目的迭代开发[^1]。开发者可以在调试模式下修改代码,并立即将更改提交到版本库中。然而,Jupyter 并未提供类似的高级调试特性;尽管可以通过第三方扩展增强这一功能,但整体体验仍不及 PyCharm 流畅。 #### 用户界面定制化程度 对于习惯传统 IDE 环境的人来说,PyCharm 提供了高度可配置的工作区布局支持多种编程范式的强大框架集成功能[^2]。与此同时,在远程开发领域,PyCharm Gateway 进一步拓展了跨平台协作的可能性[^4]。另一方面,Jupyter 则更倾向于轻量级的设计理念——基于浏览器的操作界面简单直观,便于分享研究成果或教学演示材料。 #### 性能优化辅助工具 当涉及到应用程序性能调优时,两者都提供了相应的解决方案。例如,在 PyCharm 中可以直接利用 Profiling 工具来识别潜在瓶颈所在位置[^3]。而对于那些主要依赖 Jupyter 来处理大规模数值运算任务的研究人员来说,则可能更多依靠 NumPy/Pandas 自带的方法论来进行手动调整而非借助专门软件包之外的技术手段。 ```python import numpy as np from scipy import stats data = np.random.normal(size=1000) def calculate_statistics(data): mean_value = data.mean() # 计算均值 std_deviation = data.std(ddof=1) # 样本标准差 skewness = stats.skew(data) # 偏度 kurtosis = stats.kurtosis(data) # 峰度 return { 'mean': mean_value, 'std': std_deviation, 'skewness': skewness, 'kurtosis': kurtosis } stats_results = calculate_statistics(data) print(stats_results) ``` 上述代码展示了如何在 Jupyter 或其他环境中运用统计函数评估一组随机数列特征参数的例子。 #### 综合评价 综上所述,如果目标是以高效方式构建大型企业级应用或者追求极致编码生产力的话,那么毫无疑问应该优先考虑选用 PyCharm 。但如果当前需求集中体现在快速原型制作、机器学习模型训练测试或者是学术研究论文撰写等方面,则显然采用具备更高互动性表现力特性的 Jupyter 将更为合适。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值