P3279(Fliptile)

题目大意

给定一个N*M的矩阵方格,矩阵中数据非0即1,问最少翻转(0变1,1变0)多少次使得矩阵所有元素都为0。且每次翻转(x,y)位置上的数字,其上下左右四个相邻元素也会跟随翻转,这被记为1次翻转。如果没有方案输出IMPOSSIBLE,否则输出总翻转次数最少的矩阵中每个位置翻转次数,且如果有多种最少方案,则输出字典序最小的矩阵。

解题思路

1.不难发现如果每个位置翻转2次,则相当于未翻转,所以每个位置最多翻转1次
2.如果(i,j)位置上的数字为1,为不影响前i行数据,则只需要对(i+1,j)位置进行翻转操作,从而使(i,j)位置变为0
3.根据第二条规则可发现如果第i行矩阵元素确定,则可根据第i行情况,求出第i+1行数据,且确定数据唯一
4.即如果第一行数据确定,则可确定整个矩阵翻转情况。(如果该种情况下推导出的最后一行数据不全为0,即该方案不可行)
5.如果第一行矩阵每个位置元素翻转次数确定,即第一行数据确定,即该题转换为遍历所有第一行元素翻转的方案,找出最优方案解。
6.由1可知每个位置翻转次数要么为1要么为0,即所有情况为0...0~1...1(M个0和1)。(小技巧:为了方便循环遍历所有情况,可将第一行元素转换为10进制(0~(1<<M)))

#include <iostream>
#include <cstring>
using namespace std;
const int MAXN = 20;
const int INF = 0x3f3f3f3f;
int N, M;
int value[20][20]; //value输入表格
int temp_cnt[20][20]; //cnt[i][j]表示当前方案(i,j)位置翻转次数
int temp_value[20][20]; //保存value翻转后的临时数组
int res_cnt[20][20];    //表示最优方案的每个位置翻转次数
//相邻四个方向 
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, -1, 0, 1};
//初始化tmep_cnt,和temp数组数据
void init(int n) {  //n为第1行的十进制表示方式
    for(int i = 0; i < N; i++) {
        for(int j = 0; j < M; j++) {
            temp_value[i][j] = value[i][j];
        }
    }
    //求当前方案第一行翻转情况
    memset(temp_cnt, 0, sizeof(temp_cnt));
    for(int i = M - 1; i >=0; i--) {    
        temp_cnt[0][i] = n & 1;
        n >>= 1;
    }
}
//(x, y)翻转
void flip(int x, int y) {
    temp_value[x][y] ^= 1;    //^异或运算,相同得0,不同得1,即翻转效果
    for(int i = 0; i < 4; i++) {
        int nx = dx[i] + x;
        int ny = dy[i] + y;
        if(nx >= 0 && nx < N && ny >= 0 && ny < M) {    //避免数组越界
            temp_value[nx][ny] ^= 1;
        }  
    }
}
//计算总翻转次数,-1表示不能当前方案不能满足要求
int judge() {
    //根据第一行翻转情况求当前格子状态,即temp数组
    for(int i = 0; i < M; i++) {
        if(temp_cnt[0][i]) {    //如果temp_cnt[0][i]等于1,即(0,i)位置被翻转一次
            flip(0, i);
        }
    }
    //根据上一行格子情况,确定当前位置变化,即temp[i-1][j] == 1,(i,j)位置就需要翻转一次,已使上一行为全0
    for(int i = 1; i < N; i++) {
        for(int j = 0; j < M; j++) {
            if(temp_value[i-1][j]) {
                flip(i, j);
                temp_cnt[i][j]++;  
            }
        }
    }
    //判断最后一行是否全为0,即是否完成要求
    for(int i =0; i < M; i++) {
        if(temp_value[N-1][i]) {
            return -1;
        }
    }
    //计算总翻转次数
    int cnt = 0;
    for(int i = 0; i < N; i++) {
        for(int j = 0; j < M; j++) {
            cnt += temp_cnt[i][j];
        }
    }
    return cnt;
}
int main() {
 while(cin >> N >> M) {
     int res = INF;  //答案
  for(int i = 0; i < N; i++) {
   for(int j = 0; j < M; j++) {
    cin >> value[i][j];
   }
  }
  for(int i = 0; i < (1 << M); i++) {        //遍历每种情况0...0~1....1
      init(i);
      int cnt = judge();
      if(cnt >= 0 && cnt < res) {   //更新最优操作
          res = cnt;
          for(int j = 0; j < N; j++) {
              for(int k = 0; k < M; k++) {
                  res_cnt[j][k] = temp_cnt[j][k];
              }
          }
      }
  }
  if(res == INF) {
      cout << "IMPOSSIBLE" << endl;
  }else {
      for(int i = 0; i < N; i++) {
          for(int j = 0; j < M; j++) {
              cout << res_cnt[i][j] << ' ';
          }
          cout << endl;
      }
  }
 }
 return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值