题目大意
给定一个N*M的矩阵方格,矩阵中数据非0即1,问最少翻转(0变1,1变0)多少次使得矩阵所有元素都为0。且每次翻转(x,y)位置上的数字,其上下左右四个相邻元素也会跟随翻转,这被记为1次翻转。如果没有方案输出IMPOSSIBLE,否则输出总翻转次数最少的矩阵中每个位置翻转次数,且如果有多种最少方案,则输出字典序最小的矩阵。
解题思路
1.不难发现如果每个位置翻转2次,则相当于未翻转,所以每个位置最多翻转1次
2.如果(i,j)
位置上的数字为1
,为不影响前i
行数据,则只需要对(i+1,j)
位置进行翻转操作,从而使(i,j)
位置变为0
3.根据第二条规则可发现如果第i
行矩阵元素确定,则可根据第i
行情况,求出第i+1
行数据,且确定数据唯一
4.即如果第一行数据确定,则可确定整个矩阵翻转情况。(如果该种情况下推导出的最后一行数据不全为0,即该方案不可行)
5.如果第一行矩阵每个位置元素翻转次数确定,即第一行数据确定,即该题转换为遍历所有第一行元素翻转的方案,找出最优方案解。
6.由1可知每个位置翻转次数要么为1
要么为0
,即所有情况为0...0~1...1
(M个0和1)。(小技巧:为了方便循环遍历所有情况,可将第一行元素转换为10进制(0~(1<<M)
))
#include <iostream>
#include <cstring>
using namespace std;
const int MAXN = 20;
const int INF = 0x3f3f3f3f;
int N, M;
int value[20][20]; //value输入表格
int temp_cnt[20][20]; //cnt[i][j]表示当前方案(i,j)位置翻转次数
int temp_value[20][20]; //保存value翻转后的临时数组
int res_cnt[20][20]; //表示最优方案的每个位置翻转次数
//相邻四个方向
int dx[] = {-1, 0, 1, 0};
int dy[] = {0, -1, 0, 1};
//初始化tmep_cnt,和temp数组数据
void init(int n) { //n为第1行的十进制表示方式
for(int i = 0; i < N; i++) {
for(int j = 0; j < M; j++) {
temp_value[i][j] = value[i][j];
}
}
//求当前方案第一行翻转情况
memset(temp_cnt, 0, sizeof(temp_cnt));
for(int i = M - 1; i >=0; i--) {
temp_cnt[0][i] = n & 1;
n >>= 1;
}
}
//(x, y)翻转
void flip(int x, int y) {
temp_value[x][y] ^= 1; //^异或运算,相同得0,不同得1,即翻转效果
for(int i = 0; i < 4; i++) {
int nx = dx[i] + x;
int ny = dy[i] + y;
if(nx >= 0 && nx < N && ny >= 0 && ny < M) { //避免数组越界
temp_value[nx][ny] ^= 1;
}
}
}
//计算总翻转次数,-1表示不能当前方案不能满足要求
int judge() {
//根据第一行翻转情况求当前格子状态,即temp数组
for(int i = 0; i < M; i++) {
if(temp_cnt[0][i]) { //如果temp_cnt[0][i]等于1,即(0,i)位置被翻转一次
flip(0, i);
}
}
//根据上一行格子情况,确定当前位置变化,即temp[i-1][j] == 1,(i,j)位置就需要翻转一次,已使上一行为全0
for(int i = 1; i < N; i++) {
for(int j = 0; j < M; j++) {
if(temp_value[i-1][j]) {
flip(i, j);
temp_cnt[i][j]++;
}
}
}
//判断最后一行是否全为0,即是否完成要求
for(int i =0; i < M; i++) {
if(temp_value[N-1][i]) {
return -1;
}
}
//计算总翻转次数
int cnt = 0;
for(int i = 0; i < N; i++) {
for(int j = 0; j < M; j++) {
cnt += temp_cnt[i][j];
}
}
return cnt;
}
int main() {
while(cin >> N >> M) {
int res = INF; //答案
for(int i = 0; i < N; i++) {
for(int j = 0; j < M; j++) {
cin >> value[i][j];
}
}
for(int i = 0; i < (1 << M); i++) { //遍历每种情况0...0~1....1
init(i);
int cnt = judge();
if(cnt >= 0 && cnt < res) { //更新最优操作
res = cnt;
for(int j = 0; j < N; j++) {
for(int k = 0; k < M; k++) {
res_cnt[j][k] = temp_cnt[j][k];
}
}
}
}
if(res == INF) {
cout << "IMPOSSIBLE" << endl;
}else {
for(int i = 0; i < N; i++) {
for(int j = 0; j < M; j++) {
cout << res_cnt[i][j] << ' ';
}
cout << endl;
}
}
}
return 0;
}