loc与iloc的区别

使用pandas过程中,常用到切片操作,比如df.loc[],df.iloc[]。这两个方法的细节或区别主要在两个点:

  1. loc[]方法针对显性的行列索引,iloc[]方法针对的是隐性的行列索引
import pandas as pd
import numpy as np
df=pd.DataFrame(np.random.randn(3,4),columns=list('abcd'))
#获取第二列数据
df.loc[:,2]  #错,直接这样写会报错
df.loc[:,'b'] #对,使用loc可以使用显性列名索引
df.iloc[:,2] #对,使用iloc可以使用隐性索引
  1. loc[]方法切片操作,切片范围是包含左边又包含右边,是闭区间,而iloc[]方法执行切片操作时,切片范围和python切片范围一致,包含左边但不包含右边,是左闭右开
import pandas as pd
import numpy as np
df=pd.DataFrame(np.random.randn(3,4),columns=list('abcd'))
df

在这里插入图片描述

#结果包含'd'列,范围是[0:3]列,'d'列隐性列索引是3
df.loc[:,:'d']

在这里插入图片描述

#结果不包含'd'列,范围是[0:3)列
df.iloc[:,:3]

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值