K-means 方法概括

K- means
就是把空间内点,分成K类。相似的点比较聚集,不相似的点比较偏离。用均值来代表类中心,并用于衡量与新点的距离。

初始值:
根据先验知识找到K 个均值,做迭代初始值。

迭代公式:
根据距离,判断新点的分类
由于新点的加入,调整相应的类中心

迭代终止条件:
类中心不再摆动,或者摆动幅度很小,趋于稳定。


Fuzzy K-means
在k-means的基础上,引入了隶属度概念。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值