K- means
就是把空间内点,分成K类。相似的点比较聚集,不相似的点比较偏离。用均值来代表类中心,并用于衡量与新点的距离。
初始值:
根据先验知识找到K 个均值,做迭代初始值。
迭代公式:
根据距离,判断新点的分类
由于新点的加入,调整相应的类中心
迭代终止条件:
类中心不再摆动,或者摆动幅度很小,趋于稳定。
Fuzzy K-means
在k-means的基础上,引入了隶属度概念。
K- means
就是把空间内点,分成K类。相似的点比较聚集,不相似的点比较偏离。用均值来代表类中心,并用于衡量与新点的距离。
初始值:
根据先验知识找到K 个均值,做迭代初始值。
迭代公式:
根据距离,判断新点的分类
由于新点的加入,调整相应的类中心
迭代终止条件:
类中心不再摆动,或者摆动幅度很小,趋于稳定。
Fuzzy K-means
在k-means的基础上,引入了隶属度概念。