在 N * N 的网格上,我们放置一些 1 * 1 * 1 的立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在对应单元格 (i, j) 上。
请你返回最终形体的表面积。
示例 1:
输入:[[2]] 输出:10
示例 2:
输入:[[1,2],[3,4]] 输出:34
示例 3:
输入:[[1,0],[0,2]] 输出:16
示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]] 输出:32
示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]] 输出:46
提示:
1 <= N <= 50 0 <= grid[i][j] <= 50
解决思路:总的表面积=立方体的个数*6-被覆盖的面的面积
被覆盖的面有两种情况:
1、竖直方向上的重叠(重叠个数=竖直方向上立方体的个数-1)
2、水平方向上的覆盖(重叠个数=相邻两个立方体中堆积高度小的那个)
代码如下:
public int surfaceArea(int[][] grid) {
int sum = 0;//立方体的个数
int coverCl = 0;//竖直方向被盖住的面的个数
int coverCo = 0;//水平方向被盖住的面的个数
for (int i = 0; i < grid.length; i++) {
for (int j = 0; j <grid.length; j++) {
if (grid[i][j]>0) {
sum += grid[i][j];
coverCl += grid[i][j] - 1;
if (j<grid.length-1){
coverCo+=Math.min(grid[i][j],grid[i][j+1]);
}
if (i<grid.length-1){
coverCo+=Math.min(grid[i][j],grid[i+1][j]);
}
}
}
}
return sum*6-2*(coverCl+coverCo);
}