NBA比赛数据分析与预测

本文介绍如何利用13至16年NBA比赛数据预测17年的比赛,数据源自http://www.basketball-reference.com。首先进行数据预处理,包括特征选择,通过设定阈值去除方差小的特征。接着,使用sklearn.feature_selection.SelectKBest进行特征选择,考虑评分标准如chi2, f_classif, mutual_info_classif。目的是对比不同分类方法的效果。" 114004623,8029104,恶意代码动态分析实验详解,"['恶意代码动态分析', 'process exploer', 'process moniter']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我的任务利用13到16年的NBA比赛统计数据,去预测17年的每场NBA比赛。数据是从http://www.basketball-reference.com/这个网站获得的。前期参考了https://www.shiyanlou.com/courses/782/labs/2647/document这里的分析与实现方法。这个实验楼里实现用了LogisticRegression。现在我想对数据做一些预处理,并且用其他分类方法做决策,比较着看效果。Michael J. Lopez的《Building an NCAA men’s basketball predictive model and quantifying its success》这篇文章里写了几个对预测有帮助的特征。并且总结了下他们实现方法的局限性。
这里写图片描述
这里写图片描述
这里写图片描述


对于数据预处理

特征选择

去掉方差小的特征

用一个阈值来去除方差小的变量是一种最基础最方便的方法,比如某个特征在所有样本中都是同一个值,那么这个特征没有什么信息量,可以去掉。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值