最简单的机器学习-01线性回归-附简单的运行的demo

1.线性模型是自然界最简单的模型之一,它描述了一个(或多个)自变量对另一个因变量的影响是呈简单的比例、线性关系.

例如:住房每平米单价为1万元,100平米住房价格为100万元,120平米住房为120万元。
线性模型在二维空间内表现为一条直线,在三维空间内表现为一个平面,更高维度下的线性模型很难用几何图形来表示(称为超平面):

2. 线性模型定义:
线性模型形式简单、易于建模,却蕴含着机器学习中一些重要的基本思想 . 许多功能强大的非线性模型可以在线性 模型基础上引入层级结构或高维映射而得. 此外,由于 直观表达了各属性在预测中的重要性,因此线性模型具有 很好的可解释性.例如,判断一个西瓜是否为好瓜,可以用如下表达式来判断:

3. 模型训练:
   在二维平面中,给定两点可以确定一条直线 . 但在实际工程中,可能有很多个样本点,无法找到一条直线精确穿过所 有样本点,只能找到一条与样本” 足够接近 距离足够小 的直线,近似拟合给定的样本.如下图所示:

4.线性回归的代码实现:
import numpy as np  
import matplotlib.pyplot as plt  
from sklearn.linear_model import LinearRegression  
  
# 生成模拟数据  
np.random.seed(0)  # 为了可复现性设置随机种子  
X = 2 * np.random.rand(100, 1)  # 生成100个0到2之间的随机数  
y = 4 + 3 * X + np.random.randn(100, 1)  # 真实的线性关系是 y = 4 + 3x 加上一些噪声  
  
# 将X和y的维度转换为二维数组,因为scikit-learn的输入要求  
X_b = np.c_[np.ones((100, 1)), X]  # 添加x0 = 1 到每个实例  
  
# 使用scikit-learn的LinearRegression  
model = LinearRegression()  
model.fit(X_b, y)  
  
# 预测  
X_new = np.array([[0], [2]])  
X_new_b = np.c_[np.ones((2, 1)), X_new]  # 同样添加x0 = 1  
y_predict = model.predict(X_new_b)  
  
# 绘制数据点  
plt.plot(X, y, "b.")  
# 绘制最佳拟合线  
plt.plot(X_new, y_predict, "r-", linewidth=2, label="Predictions")  
plt.xlabel("$x_1$", fontsize=18)  
plt.ylabel("$y$", rotation=0, fontsize=18)  
plt.title("Linear Regression")  
plt.legend(loc="upper left")  
plt.show()  
 

5.代码的可视化结果:


    

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值