【阅读论文】博-自动化眼底图像分析技术可筛查糖尿病患者的视网膜疾病
(1)评估和改善图像质量,(2)病变分割,(3)眼底病诊断
(1):ELVD质量指标
利用脉管系统和基于颜色的特征对数字图像的质量进行数字估计;此外,通过合并多个眼底图像(通过改变患者的凝视点来捕获)中收集的信息来提高图像质量并消除反射伪影。
(2):针对两个病变家族:渗出液和微动脉瘤
提出了两种针对单眼底图像的新算法,并与现有技术进行了比较,以证明其有效性。在微动脉瘤的情况下,开发了一种新的基于Radon变换的算子。在最后的诊断类别中,我们开发了一种算法,可根据分割的病变诊断糖尿病性视网膜病变和糖尿病性黄斑水肿。
(3):根据分割的病变诊断糖尿病性视网膜病变和糖尿病性黄斑水肿
- 读图:
第二章:眼底图像的正常结构与异常结构
第三章:眼底图像质量示例及结构分割示例
第四章:数据集及渗出分割简介
第五章:微血管瘤分割及测试
第六章:DME和DR示例
第七章:眼底图像处理及重建
第八章:获取方法
- 读表:
第二章:公共信息
第三章:ELVD质量评定统计数据
第四章:HEI-MED数据集分布
第六章:DME统计数据
第八章:增强后图像质量分数
1.简介
1.1目标和主题
简述糖尿病对人体的危害。本文的主题是扩展和利用摄像机的功能,使之以较低的成本和高自动化水平检测糖尿病引起的视网膜病变。
(1)开发一套自动评价眼底图像质量的算法;
(2)开发一套以最先及技术为基础的分割渗出的算法;
(3)开发一套在其他情况下能检测微血管瘤的算法;
(4)评价在糖尿病视网膜病变检查中算法的性能;
1.2论文概述
第2章:介绍了生物学信息,成像技术以及现有的眼底图像分析技术;
第3章:介绍了一种自动评估眼底图像质量的算法;
第4章:介绍了分割渗出的方法;
第5章:介绍了微动脉瘤的定位方法;
第6章:利用分割出的病变检测DR和糖尿病性黄斑水肿;
第7章:介绍了检测黄斑肿胀的新技术;
第8章:介绍了眼底图像增强的方法。
2.背景和重要性
2.1眼睛和眼底
- 2.1.1视网膜和脉络膜分为一下几层:
(1)内部限制膜或限制膜
(2)神经纤维层:包含神经节细胞的轴突,可传输信号到大脑的视觉皮层。在年轻的视网膜中,这一层要厚得多,随着年龄的增长,它会慢慢变薄。作为内层的血管,这种纤维不存在中央凹上以允许所有光子没有障碍的到达视杆细胞。
(3)神经节细胞层包含神经节细胞的主体
(4)内部丛状层包含双极细胞的轴突和无长突细胞。
(5)内核层包含双极和水平细胞的细胞体。
(6)外丛状层包含感光细胞的内部部分和水平细胞的树突。
(7)外核层包含感光细胞体
(8)外部限制膜或外部膜限制
(9)色素上皮,它是视网膜的最后一层。它是给人一种每个人视网膜的颜色(色素)不同
(10)布鲁赫膜,脉络膜的第一层。
(11)毛细血管脉络膜包含所有提供主要来源的血管视网膜营养素.
(12)脉络丛,脉络膜的最后一层。
- 2.1.2视网膜成像技术(5种):
眼底立体摄影:同时将两个或多个视角眼底是通过该工具获得的。这可以由眼科医生感知深度。
高光谱成像:这是不使用可见光的眼底照相机,但可以选择特定的波段。用于特殊用途,例如血氧饱和度测定法,可量化血液中的氧气含量。