论文精读:NC VSe2/NbSe2异质结近藤晶格实验与理论计算

图片

Nat Commun 15, 8797 (2024). 

https://doi.org/10.1038/s41467-024-53166-9

摘要节选

利用分子束外延技术在2H-NbSe2块体上生长单层VSe2,实现了人工近藤晶格/超导体异质结的构建。

光谱成像扫描隧道显微镜测量表明,在单层VSe2上出现了一个具有√3 × √3周期性的电荷密度波(CDW)相。出乎意料的是,在费米能级周围出现了明显的近藤共振,并均匀分布在整个薄膜上,证明了近藤晶格的形成。

密度泛函理论计算表明,在VSe2/NbSe2 中存在磁性间隙V原子,它们在形成CDW相和在VSe2中观察到的Kondo晶格中起关键作用。

从共振峰的磁场和温度依赖性两方面验证了近藤起源,得出近藤温度为~ 44 K。

此外,单层VSe2上打开了超导邻近隙,其形状偏离了单带BCS超导体的功能,但通过模型计算再现了重电子参与配对凝聚的情况。

引言节选

近藤晶格起源于局部磁矩和传导电子的周期性阵列之间的杂化,导致局部磁矩的限制和伴随的低能电子有效质量的强烈增强,这构成了重费米子材料的基本理论模型。由于Kondo屏蔽和交换耦合之间复杂的相互作用,在Kondo晶格系统中出现了丰富的奇异量子相,包括量子临界性、非费米液体行为和非常规超导性。

传统的重费米子材料是f电子化合物。范德华(vdW)材料的最新研究进展表明,重费米子也可以存在于d电子系统中。超导(SC)邻近效应,是在具有强自旋轨道耦合的纳米结构中强制超流体凝聚实现拓扑超导。可以推测,在近藤晶格中,SC配对也可以通过SC邻近效应来诱导。

但是超导的机制,特别是重电子的作用,仍然不清楚。尽管这具有很高的理论研究价值,承载这样一个近似SC近藤晶格的实验系统尚未实现。

结果与讨论

在NbSe2上生长的V-Se化合物的形态和化学计量学是从V2Se9演化而来。当衬底温度和伴随的V:Se通量比升高时,共存的2×√3和√7×√3 CDW相变为√3×√3 CDW相。

图片

不同生长参数下生长样品的STM形貌。

图片

具有2×√3和√7×√3 CDW相共存的和具有完整均匀的√3 ×√3相的单层VSe2岛的STM形貌。

图片

具有2×√3和√7×√3 CDW相共存的和具有完整均匀的√3 ×√3相的单层VSe2岛的高度以及dI/dV谱线,以及晶体结构侧面示意图。

√3 ×√3相存在V的层间插层。

为了证明V插层的存在,进行了DFT计算。尽管对单层VSe2的本征铁磁性存在争议,但人们认为CDW的形成会抵消磁性。

因此,磁矩在√3 ×√3 VSe2中的存在是不可预料的。构建了一系列可能的包含/不包含插层V的VSe2/NbSe2异质结构来捕捉实验特征。

图片

在典型偏置电压下,模拟了含/不含间隙钒的不同堆叠结构的dI/dV图。间隙的钒原子用橙色表示。发现图d, e所示的结构最适合实验dI/dV图。基于该结构计算出的局域态密度(DOS)也与实验光谱较为吻合。

图片

实验dI/dV图与DFT模拟图的比较。无插入V原子的vdW异质结构的DFT模拟dI/dV图,显示出√3 ×√3模式的三重对称性。嵌入V原子的vdW异质结构,对称性降低,与实验相符。红色三角形表示三聚体单位。

通过对生长条件的精细控制,获得了具有均匀√3 ×√3相的V插层的单层VSe2。

图片

NbSe2上生长√3 ×√3 VSe2的形貌和原子结构。红色三角形表示三聚体单元。白色虚线和绿色圆点分别代表原子晶格和√3 ×√3 周期。由DFT计算确定的√3 ×√3  VSe2/NbSe2结与插入V原子的俯视图并得到的自旋密度分布用红色表示向上自旋(↑),蓝色表示向下自旋(↓)。自旋密度图的等值面设置为0.01 e/Å3。Vi、V1、V2和V3的磁矩分别为1、0.2、−0.7和−0.4 μB。

VSe2测得的面内晶格常数为0.35 nm,单层高度为~0.60 nm,均符合1T-VSe2相。

√3 ×√3超结构的STM形貌随偏置发生剧烈变化,在1v时呈现蜂窝状,显示出其独特的电子特性。

图片

不同偏置电压下√3 ×√3 VSe2的恒流STM图像。随着偏置电压(It = 10 pA)的变化,STM图像呈现出不同的模式。在正偏和负偏下,图像亮度相反。红色三角形表示三聚体,白色虚线和绿色圆点分别表示1 × 1和√3 ×√3周期。

图片

典型的VSe2隧穿光谱表明,在费米表面有一个明显的~155 meV的间隙,间隙边缘分别位于- 130 mV和25 mV左右。CDW间隙边缘用黑色箭头标记。灰色阴影曲线描述了基于V插层的VSe2结构的DFT计算的局部DOS。

这些光谱强度在空间上变化,其中dI/dV映射随着偏差急剧演变。

图片

√3 ×√3相的具有V插层的单层VSe2大范围dI/dV光谱的空间依赖性

图片

不同偏置电压下√3×√3 VSe2的等高dI/dV映射。插图显示了DFT模拟的相应偏差下的dI/dV映射。

具体来说,√3 ×√3模式的每个单元在约[−0.3 V,−0.1 V]的偏置范围内包含一个强度相似的Se原子三聚体(红色三角形)。在[−0.05 V, 0.3 V]的低偏压下,Se三聚体中的一个原子比另外两个原子更亮;但在−0.4 V以下变的更暗。

这一观察,结合生长动力学和DFT计算,表明在异质结构界面中存在插层的V原子。

图片

CDW间隙边缘的反相位关系。具有V插层的单层VSe2的STM图像。(b)为沿(a)中白线测量的二维电导图。(c)为 (b)中电导图沿红色和紫色水平线的线形图。

两个谱隙边缘的空间强度表现出明显的反相位关系,这让人联想到CDW相位。

Ef周围的精细光谱特征可展示出低能激发相关的现象,一个明显的超越Ef的尖锐共振,其峰值在3meV位置,并叠加在一个以25meV为中心的宽峰上。(Vb = 50 mV, It = 200 pA, Vmod = 0.5 mV) 

图片

它的窄峰宽表明它不可能来自传统的电子态,但与多体自旋激发有关,最有可能的来源是近藤共振。

用线性背景的法诺线形拟合光谱,Fano因子q,近藤共振能ε0和本征近藤共振宽度Γ。

图片

图片

图片

拟合很好地匹配了实验光谱,得出近藤峰宽Γ为3.9 meV,法诺因子q为6。

图片

此外,不同尺寸VSe2岛的光谱呈现相同的近藤峰,排除了量子尺寸效应的影响。

其温度和磁场的演变进一步证明了近藤共振。

图片

近藤共振的一个严密证据是它的温度演化。在减去热展宽和锁定调制的影响后,提取了不同温度下光谱的Fano拟合的本征Γ,随着温度的升高,共振迅速变宽。

Γ作为温度T的函数的关系可以用已建立的近藤系统表达式很好地拟合

图片

在α = 5.1时产生近藤温度Tk ~ 44 K。

此外,在0.6 K施加磁场时,峰高降低和峰宽的增加表明共振受到抑制,符合预期的近藤共振行为。

图片

由于峰宽较大,即使在12T下也未观察到近藤峰分裂。

在5 mV测量的电导映射了近藤共振的空间分布,对应于近藤状态的能量。由于近藤共振叠加在CDW模式的光谱背景上,从而在实际空间中引入了周期性调制的电子密度模式。

因此,直接光谱测量的近藤峰强度也表现出与CDW相同的空间模式。

每个CDW单元可能以类似于1T -TaS2中的David之星图案的方式承载一个局部磁矩,形成一个与流动电子相互作用的自旋矩阵。

图片

略过√3 ×√3模式的多个单元测试得到的谱线,表明Kondo共振在整个表面上普遍存在。拟合的近藤共振宽度和近藤振幅沿线是相当均匀的,通过建立相干近藤筛分,证明了近藤晶格的全局性质。

图片

为了更清晰地显示近藤共振的空间均匀性,从完整CDW周期的线谱中选取STS谱,归一化后的谱显示在空间不同位置测量的近藤共振是相同的。

相干近藤晶格的形成也可以从靠近样品岛屿边缘的近藤共振的演化中表现出来。在相干纳米级近藤晶格中,晶格内部和边缘的磁性原子具有不同的量子干涉环境,导致其近藤共振发生显著变化。

图片

沿着(b)中的白线测量的dI/dV光谱,显示出均匀的整体电子结构(c), Kondo共振逐渐消失(d),以及稳健的接近超导间隙(e)。

在单层VSe2岛中,岛内部的近藤共振是均匀的,但在接近孤岛边缘时逐渐被抑制,符合相干近藤晶格行为。

近藤晶格标志着杂化间隙,然而,这在许多近藤晶格系统中是无法检测到的。因为它的隧穿光谱是由来自STM尖端的两个干扰隧穿路径决定的,它们位于流动电子和近藤共振之间。

图片

隧道路径比对隧道光谱的影响。

图片

大VSe2岛的杂化隙和超导近邻隙谱。(c, d)沿着(b)中的灰线测量的dI/dV光谱,分别显示了杂化间隙特征(c)和鲁棒超导近邻带隙(d)。

图片

另外两个单层VSe2样品的STM图像。(b, d)分别沿(a, c)中灰色箭头方向测量dI/dV光谱,表现出明显的杂化间隙特征。

为了显示杂化隙,需要调整两个干涉隧穿路径之间的隧穿比。由于VSe2 (0.352 nm)和NbSe2衬底(0.345 nm)的晶格常数略有不同,较大的VSe2岛可能积累内部应变,其局部变化可能会调节隧道率。

在不同批次样品的不同VSe2岛上,都观察到这种杂化间隙,这些观测结果有力地证实了系统中杂化间隙的存在,提供了清晰的相干近藤晶格指纹。

严格地说,共隧道模型应该适用于拟合近藤晶格谱及其温度演化。然而,它包含许多参数并且不具有简单的解析表达式,使得对实验谱的拟合不那么直接。因此,在实际的近藤晶格材料体系中,为了简单起见,经常使用单离子近藤态谱来拟合近藤晶格谱。

虽然√3×√3的CDW通常被观察到,无论堆叠顺序或嵌入,这些CDW模式的特征是具有C3对称的V反三聚化,导致两个不相等的V-V键~3.7 Å和~3.3 Å。在单层中具有相同对称性,表明vdW异质结构中的CDW受层间相互作用的影响较小,这也反映在电子性质上。

然而,在vdW异质结构中,在等腰三角形V(由两个3.3 Å键和一个3.7 Å键组成)下引入Vi会导致所有V-V键不相等,具有明显的C1对称性,例如V1-V2 ~ 3.7 Å, V1-V3 ~ 3.0 Å和V2-V3 ~ 3.2 Å。

图片

嵌入的V原子深刻地影响了该体系的晶格和电子结构。

图片

插层结构中Vi和V的三维轨道投影带结构。

电子性质也受到Vi的强烈影响。在自旋向上通道中,Vi和VSe2/NbSe2之间存在明显的杂化现象。此外,大量的电荷从Vi转移到VSe2和NbSe2层,这可能是导致观察到的层高度降低的原因。

图片

从计算得到的自旋密度分布可以看出,这种新的CDW体系在超晶格内部具有局部磁矩。在CDW相的一个晶胞内,由3-dxy和3-dz2混合组成的Vi的磁矩在EF以下−0.9 ~−0.55 eV的能量范围内高达~1μB。而VSe2层内部的磁矩为~−0.9μB,主要由V2贡献(~−0.7μB由3-dyz和3-dz2在EF以下−0.75 ~−0.3 eV范围内组成),与Vi相反。

Vi的存在也明显抑制了超晶格之间的磁交换相互作用。在没有Vi的情况下,计算得到的单层√3×√3 VSe2的磁矩为~ 3.3 μB,导致最邻近单元胞的铁磁交换相互作用较大~ 4 meV。随着Vi的增加,磁矩减小到~ 0.9 μB,部分原因是电子从Vi转移到未占据的3-dz2轨道,超晶格之间的交换相互作用减小到~ 1 meV,破坏了远程磁序的稳定,有利于超导邻近效应。

VSe2和Vi都可能对近道晶格的磁矩阵列有贡献,但由于VSe2层的频带色散更平坦(350 meV),磁矩更接近~ 1μB,因此Vi可能比V发挥更重要的作用。

综上所述,插层钒引发的CDW相对近藤晶格的形成起着至关重要的作用,间接影响了近藤晶格与邻近超导的相互作用。

在确定了近藤晶格后,研究了它与NbSe2衬底的超导性的相互作用。

对于单个Kondo杂质,其与Cooper对的交换作用在SC间隙内诱导出Yu-Shiba-Rusinov (YSR)束缚态。虽然单一近藤杂质的YSR态已被广泛研究,但实验中仍未探索近藤晶格与超导相互作用的确定性关系。

因此,在0.6 K时对SC间隙进行了光谱测量。衬底和VSe2上测量的dI/dV光谱均显示SC间隙。随着温度的升高,衬底的SC间隙逐渐被抑制,在7 K时完全消失

图片

有趣的是,虽然VSe2的SC间隙尺寸小于衬底,但其间隙的演变趋势与具有相同SC转变温度的衬底相似,这表明VSe2的SC间隙源于衬底的SC邻近效应。(Vb = 5 mV, It = 200 pA, Vmod = 0.05 mV)

图片

通过指数拟合裸NbSe2和单层VSe2的超导间隙尺寸,插层VSe2薄膜的超导邻近衰减长度估计为2.1 ~ 3.1 nm,比未插层的VSe2薄膜大。

采用两种拟合方法,一种是拟合超导间隙底部得到Δ1 = 0.80 meV(蓝色曲线),另一种是拟合超导相干峰得到Δ2 = 0.88 meV(红色曲线)。前者(后者)低估(高估)了超导间隙,从而对间隙大小设定了下限(上限)。

此外,在多个CDW周期测量的近似值SC间隙在空间上是均匀的。

图片

(c)提取(b)中dI/dV光谱的一对相干峰2Δ’之间的偏置差。

图片

(c)含有吸附物的VSe2表面STM图像(Vb = 1 V, It = 10 pA)。(a)沿着(c)中的白线测量的费米表面附近的dI/dV光谱。光谱条件:Vb = 50 mV, It = 200 pA, Vmod = 1 mV。(b)沿(c)中白线测量的SC间隙dI/dV光谱。光谱条件:Vb = 3.5 mV, It = 200 pA, Vmod = 0.03 mV

在存在种类未知的吸附质的情况下,Kondo峰被局部抑制,但SC隙保持不变,符合SC隙的邻近效应起源,证实了Kondo晶格的形成,排除了YSR态的存在。

图片

NbSe2的SC隙完全打开,其光谱形状与BCS函数非常吻合,SC隙大小为1.07 meV,测量到的间隙尺寸略小于原始NbSe2的1.20 meV,可能是由于VSe2的生长造成的。另一方面,单层VSe2在间隙内表现出有限的DOS,并且在空态上表现出一对强度更高的相干峰。不对称SC间隙来自于近藤峰引入的背景,可以将其减去以恢复间隙对称性。值得注意的是,VSe2的SC隙比常规BCS函数的相干峰明显增强,这表明超导性和重电子之间存在明显的纠缠。

单层√3×√3VSe2的CDW相的有效Kondo晶格模型下,计算得到能带结构和对应的DOS。t = 1,J = 5.5。

图片

流动电子的占用数nc = 1.1。近藤杂化在电子带附近产生重电子带,其特征是在电子带E = 0.2处有一个尖锐的共振峰。带色散的厚度与传导电子的谱重成正比。

EF附近的DOS显示了近藤晶格的超导隙(黑色曲线)与gap Δ0 = 0.108的简单单带BCS超导体的超导隙(红色曲线)的比较:近藤晶格显示了较小的超导隙Δ = 0.074,但相干峰的谱权增强。

在正常状态下,局域磁矩与流动电子之间的近藤杂化会产生一个重电子带穿过EF,其特征是在EF附近的态密度处有一个尖锐的共振峰。态密度的杂化隙在EF附近打开。但实际系统中包含多个穿过EF的导带,因此,在现实中,由于对称原因,这个间隙被其他不与局部磁矩杂化的导带填充。

在本文模型中,相邻NbSe2层的SC间隙Δ0作为有效的SC配对电位,在VSe2层中诱导SC间隙Δ<Δ0。SC间隙的减小是超导和近藤杂化之间激烈竞争的直接结果,因为它们都依赖于自旋单重态对的形成。.

配对态由重电子带中的电子组成,当温度低于SC转变温度时,这些电子参与超导性,并对谱权做出额外贡献。该带的杂化性质导致Kondo晶格模型中相干峰的谱权增强,偏离了简单的单带BCS超导体的功能。

讨论

插层V原子的证据和作用

证实V间隙原子的存在,对VSe2/NbSe2异质结构进行横断TEM成像是最直接的方法。然而,本文√3 ×√3 VSe2岛的覆盖率估计为5%,太小而无法进行这种测量。

V插层原子的存在可以从以下两个方面得到证明。

在掺杂杂质能级的特征能量下,STM形貌可以提供插层V原子的实验证明。本文中,插入的V原子与异质结构杂化,使它们的缺陷能级混合到样品的局部态密度(LDOS)中。尽管存在杂化,插层的V原子对相应能量的光谱映射可见的LDOS有贡献。√3 ×√3 VSe2的光谱映射表明,Se三聚体单元打破了其三重对称性。这表明在其中一个Se三聚体原子下面存在插层的V原子。DFT模拟的光谱映射,进一步证明了V原子的插入。

其次,通过比较不同生长条件下样品的形貌,也可以从生长动力学的角度推断出V原子的插层。在富硒和低衬底温度的生长条件下,VSe2单层生长成众所周知的2×√3和√7 ×√3周期性共存的CDW模式,符合前人在石墨烯衬底上单层VSe2的研究。随着Se通量的降低和衬底温度的升高,生长条件被促进到一个V-rich环境,√3 ×√3图案的小区域作为分离的斑块出现。进一步降低Se通量和提高衬底温度,可以在整个VSe2单层薄膜中形成均匀的√3l√3图案。注意,升高衬底温度实际上增加了Se原子在表面的解吸,同时增加了V原子的热能,有利于V原子插入到异质结界面的范德华隙中。

为了研究插层结构的能量稳定性,我们还计算了插层结构的形成能,计算得到的形成能为~ -1.64 eV/Vi,形成能的负值表明在生长过程中补充足够的钒的情况下,有形成插层结构的趋势,这与我们的实验结果一致。

比较了有V原子插入和没有V原子插入的单层VSe2的形貌、CDW模式和光谱,未插层的VSe2表现为2×√3和√7 ×√3周期的CDW模式共存,与文献中报道的在HOPG底物上生长的相似。插入的VSe2表现出√3 ×√3的CDW模式,这与未插入的情况不同。

插层的VSe2表现出-130 mV到25 mV的CDW间隙。更重要的是,插入的VSe2在费米能级附近有一个明显的近藤峰,这在未插入的情况下是不存在的。

插入V原子的存在增强了单层VSe2与NbSe2衬底之间的耦合,从而减小了它们的层间距。实验测试得到,未插层和插层情况下单层VSe2的视高度分别为0.62 nm和0.58 nm。值得一提的是,这种插入引起的层间间距减小也可以通过DFT计算再现。计算得到的2×√3和√7×√3 vdW结构的高度分别为0.61和0.62 nm,而插入的√3×√3 vdW结构的高度为0.58 nm,与实验测量结果完全吻合。

隧道路径比对隧道光谱的影响

近藤晶格标志着杂化间隙,在理想情况下应该是可以检测到的。

然而,STS测量不具备直接检测杂化间隙的动量分辨率。更重要的是,对于STS测量,近藤晶格的隧穿光谱应该表现为Fano线形状,因为从STM尖端存在两条干扰隧穿路径,一条直接进入流动电子,另一条间接通过近藤共振。

为了更清晰地描述上述效应,本文采用提出的Kondo晶格体系的共隧穿模型来描述两种隧穿路径比下光谱形状的演变。

共隧模型考虑了在费米表面附近,类电子传导带

图片

还有一条重平带,

图片

两条重费米子带在考虑相干近藤屏蔽时得到,其中ν表示光带和平带之间的杂化幅度。

图片

因此,差分电导可以表示为

图片

式中𝑡为导带与重平带之间的隧穿比,为描述上述两个带间杂化的全格林函数。根据该模型,在重、轻波段使用不同的隧穿幅值(tf/tc=5,0.17,0.002)可以得到不同的光谱形状,随着重带隧穿振幅𝑡f的增大,差动电导呈现出Kondo共振峰的形状,而没有明显的杂化能隙。相反,当导带隧穿振幅𝑡c增大时,差分电导表现出更多的杂化能隙特征。注意,当重波段隧穿幅度特别大时,差分电导呈现一对劈裂峰。

因此,在通过近藤共振的主导隧穿情况下,不能观察到在流动电子带中最突出的杂化间隙。本文中显示出近藤共振峰,因为磁性杂质晶格更靠近STM尖端,而NbSe2衬底中的流动电子则离尖端更远。在许多近藤晶格体系中只观察到近藤共振峰,而不是预期的杂化间隙。

排除YSR状态

在本文中,近藤温度TK远高于超导转变温度TC。对于单一磁性杂质,在Tk> >TC的极限下,YSR状态稳定在非常接近超导间隙边缘的位置。

然而,可以排除SC相干峰的增强是由于YSR态的存在,原因如下:

1)在整个VSe2薄膜中,近藤共振的空间分布是均匀的。这表明近藤杂质的杂质浓度非常高(每√3×√3个单位晶胞中存在一个)。如果超导隙的变化是由YSR态的存在引起的,对于如此高的杂质浓度,超导隙已经被杂质带完全填充,而不仅仅是稍微缩小。

2)对于YSR态,类粒子和类空穴激发的谱权受到库仑势的影响,而库仑势通常会破坏粒子-空穴对称性。然而,这与我们的实验结果形成了直接对比,实验结果显示超导状态下的光谱几乎是对称的,只有正偏压下的相干峰略高。稍微不对称的超导间隙来自于近藤峰引入的背景,可以将其减去以恢复间隙的对称性。

图片

此外,在多个CDW周期测量到的两个增强峰在空间上是均匀的。这些观测结果与两个增强峰的YSR起源不相容,但表明它们是邻近超导的相干峰。

3)在近藤态和对吸附物和岛边界的超导响应中也排除了YSR态的存在。

Kondo峰在单层VSe2的吸附位点被局部抑制,但两个增强峰保持不变。这一观察结果与不相互作用的单离子近藤态的情况相冲突,因为吸附位点的YSR态与周围区域明显不同。同样,岛边界附近的近藤共振也发生了明显的变化,但测量到的超导性与岛内部一致。相反,近藤晶格与超导性的相互作用导致了单层VSe2的超导近邻间隙,其相干长度比吸附质大一个数量级,很好地解释了吸附质上均匀的超导间隙。

4)在阶跃边缘附近获得的三个光谱,显示了Kondo光谱的强烈变化。

图片

具体来说,粉红色的光谱没有近藤峰,其超导间隙是完全对称的,但仍然不能适应BCS形式。绿色的光谱有两个分裂的近藤峰,右边的峰正好位于费米能级,费米能级的超导间隙也是对称的。黑色光谱显示出轻微的不对称超导间隙,因为它的近藤峰在费米能级之上。这些观测结果进一步证明了超导间隙的不对称性只是背景的影响,而不是Shiba带的影响。

尽管没有近藤峰,但粉红色的超导隙与绿色的超导隙是相同的。这显然排除了Shiba 的可能性,Shiba带非常敏感地依赖于近藤特征。

5) 实验发现两个相干峰都比原始NbSe2的相干峰大大增强,这实际上为相干近藤晶格行为提供了证据。相干峰谱权值的增强表明,插入的V位上的电子离域并参与超导。

这种效应只有在近藤晶格上才有可能,在近藤晶格上,局部矩通过与流动电子杂化而表现出相干行为。在许多重费米子超导体中,相干近藤温度Tcoh通常比TC大几个数量级。事实上,Tcoh >> TC为已经在TC以上的相干近藤晶格的形成留下了广阔的温度窗口。

方法

样品制备

在450°C的超高真空室中,将2H-NbSe2基片切割并进一步脱气。切割后,分别在Knudsen池和电子束蒸发器中用高纯度Se(纯度99.999%)和V(纯度99.95%)原子共沉积VSe2薄膜,同时将2H-NbSe2衬底在适当温度下保持15分钟。不同的衬底温度(310℃~ 435℃)对应不同的V-Se化合物。本研究重点√3×√3 VSe2所需温度略高于400℃。

STM测量

Unisoku STM(1300)进行。电化学蚀刻W线作为STM尖端。

在测量之前,尖端在生长在Si(111)衬底上的Ag(111)多层薄膜上进行表征,该薄膜已通过几次闪蒸至1500 K进行清洗。隧道光谱的测量采用标准锁相检测技术,调制电压为983 Hz

DFT计算

VASP,PAW-GGA-PBE。

价电子V:3p6 3d4 4s1、Nb:4p6 4d4 5s1和Se:4p4 4s2 。

模型:双层VSe2/NbSe2异质结,真空层15 Å。

零阻尼函数的grime DFT-D3方法对范德华力进行校正。

结构优化 0.05 eV高斯涂抹。ECUT 500 eV,8 × 8 × 1 k点,收敛标准 0.005 eV/Å,10-6 eV。

静态k点12 × 12 × 1,10-7 eV收敛。

通过实验研究模拟的dI/dV图来确定插层结构。dI/dV图的模拟基于对应能量Eb在Eb±0:01 eV范围内,距离表面约3 Å处DOS的总和。

自旋轨道耦合(SOC)忽略。

理论模型

用自洽平均场方法研究了近藤晶格模型中近藤杂化与近似超导的相互作用。

原则上,CDW顺序导致了多波段电子结构。接近半填充的能带可能经历更强的电子相关性,并通过轨道选择机制变得局域化。这个局域带中的电子可以近似为局域磁矩,因为电荷激发被严重抑制和间隙。另一方面,其他带中的电子仍然是流动的。为了理解这个由流动电子和定域电子组成的系统的低能物理性质,考虑了一个定义在√3×√3三角形超晶格上的有效Kondo晶格模型,该模型对应于单层VSe2的√3×√3CDW相的晶格结构。

哈密顿量为,J是近藤耦合

图片

考虑与近藤杂化相关的单个传导带,它可以用最近邻跳变的紧束缚模型来近似描述。单层VSe2的实际电子结构可能更复杂,这可以通过包括其他导带和进一步邻近的状态来描述。

假设NbSe2层的SC间隙为Δ0。这种传统的BCS型间隙通过接近效应对单层VSe2中的流动电子起到吸引SC配对电位的作用。

为了理解近道杂化与超导在该模型中的相互作用,我们首先将局部自旋算符改写为伪费米子表示:

图片

对于S = 1/2局部矩的精确表示,我们通过在哈密顿量中引入拉格朗日乘子ϵf,获得约束

图片

在伪费米子表示中,局部矩对应于费米能量处的平坦伪费米子带。为了处理Kondo耦合项,我们采用平均场分解

图片

近藤杂化的参数化为

图片

为简单起见,假设V的平移对称,V和ϵf是以自洽的方式确定的。

考虑到c费米子和f费米子之间的双线性耦合,期望在游动电子之间的SC配对可以诱导伪费米子内部的配对。因此引入了一个额外的平均场

图片

在正常状态下,可以设置Δ0 = 0。在t = 1,J = 5:5时投射到传导电子上的能带结构和相应的态密度结果显示,近藤耦合导致了流动费米子和赝费米子之间的有限杂化。

作为近藤杂化的结果,平坦的赝费米子带变得弱色散,形成重电子带。这个重电子带的特点是在费米能量附近的态密度有一个尖锐的共振峰。

当Δ0打开时,可以通过Bogoliubov变换求解模型。在近藤杂化存在下,这是一个有效的双带模型,SC态的激发能为E±k。诱导SC隙Δ可由准粒子在费米能处的最低激发能Ek-计算

图片

态的密度可以表示为

图片

在Δ0 = 0.1,t = 1,J = 5.5时,近藤晶格中费米能量附近的态密度计算结果与具有SC隙Δ0的单带超导体相比有两个主要差异。

首先,近藤晶格中诱导SC隙Δ小于Δ0。SC间隙的减小可以理解为:一个流动电子可以通过与另一个流动电子形成自旋单重态库珀对来参与超导,或者通过形成近道单重态来屏蔽局域磁矩。这两个过程是直接竞争的。结果,在近藤耦合的存在下,SC间隙减小。

另一个不同之处在于,与简单的BCS超导体相比,Kondo晶格模型中相干峰的谱权得到了增强。注意,靠近费米能量的带是重电子带。这个重电子带含有相当一部分的f-费米子。这些电子参与超导性自然导致谱重的增强。

此外,如上所述,近藤晶格可以看作是由c-费米子和f-费米子组成的双带系统。因此,间隙函数比简单的单带超导体的间隙函数更复杂,并且可能偏离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值