- 博客(6296)
- 资源 (59)
- 问答 (2)
- 收藏
- 关注
原创 SwiftUI macOS全球开发资源汇总
你说flash好用,苹果给封杀了。你说h5很灵活,苹果悄悄清洗h5。你说kotlin好用,苹果给你造了Swift。你说flutter好用,苹果就自己造了SwiftUI。苹果的原则很简单,我的世界必须都是我的。作为在苹果世界里面种地的码农,俺们还是要遵守人家都规则,能够native就尽量不要高跨平台,能用苹果制造就不要用google生产。大牛肯定要给你布道跨平台的优势,但是人家在做现象级别的app,可以和苹果讨价还价,而俺们这类普通程序员还是老老实实的用苹果造吧。WWDC2020更新汇总本次次.
2020-08-07 22:41:45 2423 4
原创 使用 Ollama 的 RAG 与 LLaMA:深入探究检索增强生成
概述RAG 是一种混合方法,通过在生成过程中集成外部知识源来增强大型语言模型 (LLM)。这可确保响应在事实上准确且基于真实数据,使 RAG 成为问答、文档摘要和聊天机器人等应用的有效技术。RAG 的工作原理RAG 有三个主要阶段:数据提取:收集和预处理文档(例如 PDF、网页或数据库)。使用文本分块器将文档分割成更小的、可检索的块。数据检索:将文档块作为向量嵌入存储在FAISS 等向量数据库中。根据使用语义相似性的查询检索最相关的块。
2024-12-06 14:24:44 1
原创 只需一个 GPU:本地微调 120 亿视觉语言模型 AI 工程师使用 Docker、Colab 和 Unsloth 的指南
ChatGPT 的兴起造成了一种普遍的误解,即有意义的 AI 开发只属于 OpenAI、Google 和 Meta 等科技巨头。这种看法并不奇怪,尤其是考虑到像 Meta 的开源 405B 参数(大小为 812 GB)Llama 3.1 这样的大型模型,它在 MMLU 和 HumanEval 等行业标准基准上的表现可与 GPT-4 Omni 相媲美。
2024-12-02 14:14:40 18
原创 使用 Tablib 处理 Python 中的简单表格数据 有时浅层抽象比性能更有价值
多年来,我一直在使用 Python 中的 Pandas 和 PySpark 等工具进行数据提取、数据处理和数据导出。这些工具非常适合复杂的数据转换和大数据量(当数据适合内存时,使用 Pandas)。但是,我经常在以下情况下使用这些工具:数据量相对较小。数据量远低于 100,000 行。性能根本不是问题。想想一次性的工作或每天午夜重复的工作,但我不在乎它需要 20 秒还是 5 分钟。无需进行复杂的转换。只需导入 20 个格式相同的 JSON 文件,将它们堆叠在一起,然后将其导出为 CSV 文件即可。
2024-11-29 09:15:13 18 1
原创 使用 LLM 从头构建知识图谱 使用 LLM 将 Pandas 数据框转换为知识图谱。从头开始构建您自己的 LLM 图形生成器,通过 LangChain 实现 LLMGraphTransformer,
在本节中,我们创建一个自定义流程,其中 LLM 根据数据集自动生成节点定义、关系和 Cypher 查询。此方法可用于其他 Dataframes 并自动识别模式。但是,请考虑它不会与现代解决方案(如 LangChain 的 LLMGraphTransformer)的性能相匹配,我们将在下一节中介绍它。相反,使用本节来了解可能的“从头开始”的工作流程,发挥创意,然后设计自己的。事实上,如果当前SOTA(最先进Graph-Builder)方法有一个主要限制,那就是对数据的性质和模式高度敏感。
2024-11-28 15:52:10 27
原创 使用 CUDA 提升你的 Python 代码 使用 Numba 的 CUDA JIT 轻松定位您的 GPU
上面的 TL;DR 是我展示了如何使用 Numba 显著提高 Python 代码的速度。Numba 是一个高性能 Python 库,旨在优化代码速度。Numba 的核心是一个即时 (JIT) 编译器,它将 Python 和 NumPy 代码的子集转换为快速机器代码。这个过程是自动和动态的,允许 Python 开发人员以最少的更改原始 Python 代码来获得真正的性能改进。
2024-11-28 08:37:02 17
原创 新款 Mac Mini M4 接受 AI 推理测试, Stable diffusion、Flux、qwen2.5-code
搭载 M4 处理器的 Mac mini 有哪些变化?售价 599 美元的最新款 Mac mini M4 16GB 在 AI 任务上的表现如何?让我们一探究竟。
2024-11-28 08:27:19 13
原创 微调 Llama 3.2 Vision:让 AI 更好地解读医学图像(教程含源码)
在训练期间始终监控 GPU 内存使用情况从少量的训练步骤开始测试你的设置确保你的训练数据是高质量的并且被正确标记跟踪前后结果以衡量改进您可以随意试验超参数并根据您的具体用例调整代码。医疗保健领域的人工智能正在迅速发展,并且有足够的创新空间!
2024-11-26 09:04:34 86
原创 探索 NVIDIA 的全新 LLM 架构:Hymba
近年来,开发更快、更高效、更准确的大型语言模型 (LLM) 的竞争愈演愈烈。人工智能和计算技术领域的领导者 NVIDIA 推出了一种名为 Hymba 的新型 LLM 架构,旨在在准确度、内存效率和吞吐量等关键指标上超越许多现有模型。让我们深入了解这一突破、它与其他模型的比较以及它对人工智能爱好者的意义。
2024-11-25 08:44:45 24
原创 探索替代方案:摆脱 VMware 的成功与挑战
近年来,IT 基础架构的格局一直在快速演变,企业不断寻求优化成本、提高性能和保持灵活性的方法。一个重大转变是远离 VMware,尤其是在被 Broadcom 收购之后。这导致各种规模的组织都在探索更符合其需求和预算的替代方案。本文深入探讨了这些迁移背后的原因、面临的常见挑战以及 IT 专业人员采用的一些成功替代方案。
2024-11-25 08:28:04 19
原创 金融赚钱系列之用Python获取金融数据并分析(以苹果股票为例)
例如,如果要从IEX获取数据(假设已安装相关依赖并注册了账号获取了API密钥),可以将代码中的 ‘yahoo’ 替换为 ‘iex’ (或其他对应数据库的名称),并根据该数据库的要求进行必要的参数设置(如添加API密钥等)。这段代码将绘制出苹果股票收盘价、20天移动平均线和100天移动平均线的图表。这将显示数据的前5行,你可以看到数据包含了日期(Date)、开盘价(Open)、最高价(High)、最低价(Low)、收盘价(Close)、交易量(Volume)和调整收盘价(Adj Close)等列。
2024-11-22 07:02:34 29
原创 构建基于 YOLOv8 的 Flask 应用程序进行图像预测
物体检测是计算机视觉的核心组件,YOLO(You Only Look Once)模型是实时检测任务中最流行的框架之一。本文将指导您构建一个集成 YOLOv8 的 Flask Web 应用程序,使用户能够上传图像、运行物体检测并在 Web 上可视化结果。该项目将 Flask 用于 Web 开发的简单性与 YOLOv8 用于准确快速的对象检测的强大功能相结合。让我们开始吧!
2024-11-20 08:41:16 25
原创 本地大模型系列之如何为多个数据库构建一个聊天机器人(教程含源码)
我们正在构建的聊天机器人支持以下功能:处理 CSV 文件根据用户的查询动态生成和执行 Python 代码从 CSV 文件中提取数据。处理 PDF使用向量嵌入来存储并根据用户查询检索相关文本。图像搜索查询存储在矢量数据库中的图像以根据用户输入检索相似或相关的图像。使用 LLM 进行决策确定查询是否需要访问数据库或者是一般对话查询。该脚本实现了基于 Streamlit 的 AI 助手,能够与多种数据类型交互并处理有关图像、杂货数据、微调 LLM 模型或一般问题的查询。
2024-11-20 08:34:28 114
原创 本地电脑从头构建用于医学文本处理的多智能体 AI 系统
在快速发展的人工智能领域,多智能体系统因其通过协作处理复杂任务的能力而受到广泛关注。本文探讨了用于处理医学文本的多智能体人工智能应用程序的架构、工作流程和未来发展方向。该系统使用 Streamlit 作为前端,并通过 Ollama 利用 Llama-3.2:3b 模型构建,其中包括用于总结医学文本、撰写研究文章和编辑受保护健康信息 (PHI) 的智能体。在决定从头开始构建多智能体系统还是使用现有的智能体框架(如 CrewAI、Autogen 或 OpenAI Swarm)时,重要的是要权衡每种方法的利弊。
2024-11-18 14:05:19 21
原创 使用 PyTorch 从头构建最小的 LLM 该项目构建了一个简单的字符级模型
这是最简单的字符级语言模型之一,是一个很好的起点。通过添加更多层、使用更大的数据集或增加上下文长度,您可以改进模型并生成更具创意的名称。但不要止步于此!尝试输入一组不同的名称 - 比如龙、精灵或神秘生物 - 并观察它如何学习捕捉这些氛围。只需稍加调整,此模型就可以成为您首选的幻想世界名称生成器。祝您训练愉快,愿您的作品听起来和看起来一样精彩!
2024-11-18 11:08:22 106
原创 尊敬的 IT 部门,请停止尝试构建自己的 RAG
看:您永远也不会构建自己的 CRM 系统或自定义 CMS — 或者在大多数情况下,构建自己的 LLM。你会吗?然而,我看到 IT 部门到处都在说服自己,建立自己的基于 RAG 的聊天室会有所不同。事实并非如此。事实上,情况更糟。让我给你描绘一下:上周,我观看了一支才华横溢的工程师团队演示他们崭新的 RAG 管道。全部由内部开发。他们感到自豪。他们很兴奋。他们有向量嵌入!他们有快速的工程设计!他们……不知道接下来会发生什么。相信我,我以前看过这部电影。多次。
2024-11-16 21:35:06 200
原创 使用 SAM2 模型检测卫星图像中的场边界 将 Segment Anything 模型版本 2 应用于卫星图像以检测和导出农业区田地边界的分步教程
手动绘制田地边界是最耗时的任务之一,其准确性取决于执行人员的表现。然而,准确的边界检测在许多领域都有应用。例如,假设你想训练一种机器学习算法来分析卫星图像中的植被指数与农场作物产量之间的关系。你需要的第一个输入是农场的 Shapefile,通常必须手动绘制。绘制一个 Shapefile 可能只需要几分钟,但如果你需要为 1,000 个农场绘制边界怎么办?这时这个过程就会变得非常耗时,而自动提取边界的技术就变得非常有价值——节省了数小时的工作时间。
2024-11-16 21:28:43 309
原创 Ollama 的新视觉模型支持:综合指南
Ollama 最近增强了其功能,引入了对 Llama 3.2 视觉模型的支持,允许用户处理和分析除文本之外的图像。这种多模式功能是一次重大飞跃,使 AI 中更复杂的交互和应用成为可能。本文将详细介绍如何在检索增强生成 (RAG) 系统中设置和使用这些视觉模型。
2024-11-15 14:23:14 153
原创 如何使用 LLM 从 50 万封电子邮件创建知识地图
电子邮件通信包含有关企业发生情况的关键信息,以及谁负责关键决策的关键信息。但对于大多数企业来说,电子邮件实在是太多了。人类无法在合理的时间内阅读所有内容、提取相关信息并发现关键联系。此外,任何解决方案都需要具有交互性和可解释性:我们希望能够缩小范围并了解所有内容,也可以放大到单个电子邮件。在这篇文章中,我将展示我们如何在不到 12 小时内从 500,000 条公开的电子邮件中生成可解释的交互式知识地图。我们使用了 Kineviz SightXR,它可以让用户。
2024-11-15 08:48:09 25
原创 制药行业中的人工智能:人工智能在制药生命周期每个阶段的作用的完整指南
制药行业正处于人工智能 (AI) 推动的转型边缘。在这个速度和精度可能决定生死的行业中,人工智能正迅速成为一项无价的资产。根据埃森哲 2023 年的一份报告,到 2025 年,生命科学领域使用人工智能每年可为该行业节省约 1500 亿美元。仅凭这种降低成本的潜力,人工智能就成为一项有吸引力的投资,但它的影响远远超出了财务方面。借助人工智能,药物研发过程(传统上需要 10 到 15 年,平均花费 26 亿美元)可以缩短数年,节省数百万美元并加速获得救命治疗。
2024-11-15 08:28:56 19
原创 RAG 即服务RAG as a Service:开发人员的新好朋友
即服务”是什么意思?您将获得以下内容:即时访问强大的 RAG 功能,无需担心基础设施问题。快速部署仅需几分钟,而不是几个月。最好的部分是什么?这一切都由专家管理,他们会为您完成艰苦的工作。例如,我曾遇到过 Hubspot 的一名早期员工。在早期,客户会说:“嘿,我可以建立自己的 CRM。我为什么要购买 Hubspot?他们会回答“当然可以。
2024-11-14 14:20:43 32
原创 Nano GraphRAG 与 Ollama:更精简、更快速、更高效的 GraphRAG 方法 — 本地安装指南
Nano GraphRAG是 GraphRAG 的轻量级简化版本,旨在使基于图形的 RAG 方法更易于访问和高效。与成熟的 GraphRAG 实现不同,Nano GraphRAG 旨在实现极简主义,仅包含约 1,100 行代码,专注于速度、效率和易用性。该项目旨在轻松与各种 LLM 后端集成,包括本地(例如 OLAMA)和基于 API 的模型(例如 OpenAI、Anthropic)。这允许用户利用基于图形的知识增强,而无需繁重的基础设施要求。该query()函数用于使用索引数据检索答案。print(
2024-11-12 17:25:05 45
原创 确保 Android 平台安全:综合指南、Root 设备检测
平台安全意味着确保您的应用以安全、可信的方式与设备和任何外部服务交互。Android 为开发者提供了一套 API 工具包和策略,用于发现被篡改的设备、确认设备身份以及安全地验证用户身份。通过结合这些安全措施,您可以阻止未经授权的访问、检测有风险的设备并增强应用的整体安全性。
2024-11-11 14:09:20 22
原创 VLM 简介:计算机视觉模型的未来 使用 VLM 构建准确率提高 28% 的多模式图像搜索引擎
具有数十亿甚至数千亿个参数的LLM已不再是新鲜事物。我们随处可见它们!LLM 研究的下一个重点更倾向于开发多模式模型(全模型)——可以理解和处理多种数据类型的模型。顾名思义,这些模型不仅可以处理文本,还可以分析图像、视频和音频。但我们为什么要这么做呢?万事通,一事无成,但往往比精通一门要好。近年来,我们看到了一种趋势,即通用方法主导狭义方法。想一想。如今,语言驱动的 ML 模型已经变得相对先进和通用。一个模型可以完成翻译、总结、识别语音标签等多项功能。
2024-11-11 09:19:38 29
原创 使用 Apple MLX 对 LLM 进行医学诊断预测微调(教程含完整源码)
在我之前的文章中,我讨论了微调大型语言模型 (LLM) 的基础知识及其使用该Apple MLX框架的具体用例,包括如何构建 LLM 的自定义版本。那篇文章重点介绍了使用 微调 LLM 的特定用例,mistralai/Mistral-7B-Instruct-v0.2用于Low Rank Adapters (LoRA)文本到 SQL 任务,允许模型根据用户提示生成 SQL 查询。在这篇文章中,我将探讨用于医疗诊断预测的更高级 LLM 微调用例。
2024-11-11 08:37:51 161
原创 Llama 3.2 Vision 评测(教程含源码)
Ollama 刚刚宣布正式支持 Llama 3.2 Vision 模型。Llama 3.2 Vision 模型有两种规模:110 亿和 900 亿参数。在本文中,我将概述它们在不同情况下的表现,以及我对它们的个人看法。Llama 3.2-Vision 指令调整模型针对视觉识别、图像推理、字幕和回答有关图像的一般问题进行了优化。这些模型在常见的行业基准上优于许多可用的开源和封闭多模式模型。该模型还支持多种语言:对于纯文本任务,官方支持英语、德语、法语、意大利语、葡萄牙语、印地语、西班牙语和泰语。
2024-11-10 10:18:19 177
原创 用于 100 GB 数据处理的 Polars,单台机器上高效处理数据,处理 10-100+ GB 的数据感觉只需一个 GPU 即可交互
如果您希望加快数据处理和分析速度,尤其是处理非常大的数据集时,请尝试支持 GPU 的 Polars。借助其在 CPU 和 GPU 之间无缝切换的能力,您可以处理大量数据,同时最大限度地降低设置复杂性。
2024-11-08 10:21:00 287
原创 LLama 3.2 Vision 视觉模型实践教程之Llama3.2 Vission 已在 Ollama 上线:Meta 的多模态 AI 用于文本和图像处理 — 现在可在本地或 Colab 上使用图像
人工智能领域发展迅速,最近的创新不断突破模型所能实现的界限。其中最令人兴奋的进步是多模态人工智能,它使模型能够处理和理解来自各种模态的输入,例如文本、图像甚至音频。该领域最具突破性的模型之一是 Meta 的LLaMA 3.2 Vision。这个强大的多模态模型集成了语言和视觉推理能力,使其成为视觉问答、文档分析和创意应用等复杂人工智能任务的领先解决方案。在本综合指南中,我们将深入探讨 LLaMA 3.2 Vision 的架构、主要功能和基准,并提供Ollama的动手教程来帮助您入门。
2024-11-08 08:51:07 368
原创 vGPU 系列 之 GPU 共享技术指南:vGPU、MIG 和时间分片
优化 GPU 利用率对于现代计算至关重要,尤其是对于 AI 和 ML 处理而言,GPU 在其中发挥着关键作用,因为它们具有无与伦比的并行计算和快速处理大型数据集的能力。现代 GPU 在这些领域中具有无价的价值。它们拥有数千个核心,可实现非常高的并行性。这可以实现传统 CPU 无法实现的复杂模型训练和实时数据分析。通过充分利用 GPU 资源,组织可以加速MLOps 工作流程、获得更快的洞察力并提高其计算基础架构的效率。
2024-11-08 08:36:48 113
原创 vGPU 系列 之 使用 RTX 40xx 系列 GPU 设置 vGPU:可以吗?
虚拟 GPU (vGPU) 允许将单个物理 GPU 拆分并共享到多个虚拟机,从而使每个虚拟机能够利用 GPU 的一部分资源,就像直接分配给它一样。此设置对于各种工作负载都很有价值,包括 AI 模型训练、视频处理和虚拟桌面中的图形密集型应用程序。通过使用 vGPU,您可以最大限度地提高硬件利用率、降低成本并在多个虚拟实例中实现高计算性能。在企业环境中,vGPU 通常通过 NVIDIA 的数据中心和工作站 GPU 实现。然而,对于个人和小型项目,用户越来越有兴趣将 vGPU 功能应用于消费级卡。
2024-11-08 08:30:22 39
原创 LLaMA 3.2 Vision 视觉模型实践教程之如何使用 Llama 3.2 视觉模型:从本地推理到 API 集成,图像字幕、视觉问答、图像分类和对象检测、视觉叙事
Llama 3.2是 LLaMA 系列的最新版本,它带来了增强的多模态功能,包括强大的视觉模型。无论您是处理图像进行分析、生成视觉内容还是构建 AI 驱动的应用程序,Llama 3.2 的视觉模型都能为计算机视觉任务开辟新的可能性。在本系列博文中,我们将探讨如何在本地和通过 API 利用视觉模型,从而根据您的特定需求为您提供灵活性。在深入探讨“如何”之前,让我们先来谈谈“为什么”。Llama 3.2 的视觉模型将先进的图像处理功能与语言理解相结合,可实现以下任务:图像字幕:根据图像生成描述性文本。
2024-11-04 17:24:16 274
原创 使用 Google Mesop 进行数据可视化 Google Mesop 是一个易于使用的 Python UI 框架。我们将了解如何使用它来通过 Plotly 创建数据可视化应用程序。
通过将 Mesop 简单但功能强大的 UI 组件与 Plotly 全面的图表功能相结合,您可以构建一个动态的交互式应用程序来展示 Python 中的数据可视化。Mesop 是一个为快速 AI 和 Web 应用程序开发而开发的 Python 原生框架,它允许您构建复杂的界面,而无需传统的前端技能;当然,Plotly 是一个著名且使用良好的图形库。我们将利用这些组件构建一个数据可视化应用程序。
2024-11-04 09:31:54 27
原创 跳过 APK:如何将 Flutter 移动应用部署为即时 Web 预览版
嘿,Flutter 开发者和软件公司们!让我们来谈谈每个应用展示中的那个痛苦时刻:求职者:您能向我们展示一下您的 Flutter 项目吗?发送 APK“啊……我们的招聘人员每天要审核 100 多份申请,但无法在公司设备上安装 APK。也许可以发送屏幕截图?就这样,您出色的应用程序就被扔进了未公开项目的坟墓。在一堆申请中,招聘人员不会花额外的时间绕过安全协议来查看您的工作。服务公司:客户:“这个应用概念听起来很棒!我们可以看看演示吗?你:发送 APK。
2024-11-04 09:09:38 18
原创 本地AI大模型之Notebook Llama:构建 PDF 到播客工作流程的开源指南(教程含源码)
Notebook Llama 可以视为 NotebookLM 的开源版本。它提供了一种循序渐进的方法,利用大型语言模型 (LLM) 和文本转语音 (TTS) 模型自动从 PDF 源创建播客内容。Notebook Llama 利用一系列 Jupyter 笔记本来指导用户完成整个过程。
2024-11-02 11:30:41 27
原创 Meta NotebookLlama:Google NotebookLM 的开源替代品(教程含源码)
NotebookLlama 功能的核心是使用 Meta 强大的 Llama 模型。这些模型驱动整个工作流程,实现强大的文本处理和转换为适合播客的摘要。该过程分为几个关键步骤:PDF 预处理:使用 Llama-3.2–1B-Instruct 模型,NotebookLlama 清理和构建文本,删除多余的字符以准备音频生成内容。
2024-11-02 11:10:58 49
原创 构建 Flutter 应用时应该掌握的关于表单验证的知识(教程含源码)
嗨,Flutter 开发者们 👊 今天我想谈谈我使用 Flutter 开发应用程序时遇到的一些事情。在开发自己的 Flutter 项目时,我很快意识到验证用户输入至关重要。如果没有验证,用户可能会在字段中输入任何内容,从而导致错误并可能导致应用程序崩溃。我想确保我的应用程序能够安全地处理输入,因此我深入研究了 Flutter 的验证工具。以下是我在此过程中学到的知识,以及一些帮助您轻松设置表单验证的实用技巧。
2024-11-02 09:11:24 24
原创 如何在家庭实验室中启用 GPU 分区:开源解决方案和硬件要求
随着虚拟化环境在家庭实验室设置中的日益普及,许多人都在寻求在多个虚拟机 (VM) 之间共享 GPU 资源的方法,以完成 3D 渲染、CAD 设计和视频转码等任务。目标通常是实现真正的 GPU 分区,而不依赖 Nvidia GRID 等昂贵的专有解决方案。开源解决方案正在迅速发展以满足这些需求,但处理硬件兼容性、虚拟机管理程序选择和设置配置可能具有挑战性。本指南探讨了使用开源工具实现 GPU 分区的选项,强调兼容的硬件和虚拟机管理程序配置。
2024-11-02 09:05:49 26
原创 OLLAMA 和 Hugging Face:数千个模型,一个强大的 AI 平台 利用多样化模型的力量来获得更智能的解决方案
默认情况下,Q4_K_M如果量化方案存在于模型存储库中,HF 会使用该方案。如果不存在,HF 会默认选择存储库中存在的一种合理的量化类型。要选择不同的量化,请执行以下操作:-在Files and Versions模型页面右上角附近的选项卡中,将显示该模型的所有不同变体的列表。选择具有所需量化的变体。与以前一样,Ollama从Use this model下拉列表中选择。
2024-11-02 08:52:02 29
原创 使用 Streamlit 将 Excel 数据转换为交互式仪表板
想象一下,无需学习 HTML、CSS 或 JavaScript,即可将 Excel 电子表格转变为动态、交互式仪表板。在本文中,我将向您展示如何仅使用 Python 和一些关键库(Pandas、Plotly 和 Streamlit)来实现这一点。本教程将帮助您更有效地可视化数据并以交互式 Web 格式与他人分享见解。《如何微调 NLLB-200 模型以翻译新语言(教程含源码)》 权重6,微调类、NLLB-200 模型《将 Llama 3 与 Ollama 和 Python 结合使用 使用 Ollama A
2024-11-01 16:23:02 16
原创 如何在 Apple Silicon Mac 上运行 Ubuntu:简单指南、示例、提示和技巧
通过虚拟化,您可以通过创建“虚拟机”(VM) 在主系统 macOS 内运行单独的操作系统(如 Ubuntu)。您可以将其视为计算机中的计算机,这样您就可以试验和使用软件而不会影响主设置。在 Apple Silicon Mac 上安装 Ubuntu 可以为 Linux 探索开辟新的机会。从开发和编码到设置自定义环境,此设置既灵活又强大。虽然它不像 macOS 那样即插即用,但对于那些想要充分利用 Linux 和 macOS 世界的人来说,这是一个值得的设置。
2024-11-01 15:48:55 172
iOS游戏开发之使用 Spritekit 框架和 Swift 的 iOS 2D 太空射击游戏源码
2023-01-25
使用 Python 自动创建 Excel 仪表板
2023-01-16
全流水线边缘检测器算法使用 VHDL源码
2023-01-15
使用Stable Diffusion改进图像分割模型
2023-01-14
matlab 微积分和微分方程使用 ezplot、fplot、fimplicit3 和 ezpolar 绘制函数教程
2023-01-14
Matlab数学基础操作之derivatives(导数)、integration(积分子)、nonlinear equatio
2023-01-12
SwiftUI可重用的下拉选择器项目含源码
2023-01-11
SwiftUI 自定义下拉菜单组件支持自定义颜色Dropdown list menu
2023-01-11
macOS SwiftUI 教程之入门toolbar工具栏
2020-12-22
macOS SwiftUI 获取本地文件的类型标识符UTType
2020-12-22
macOS SwiftUI教程之通过回车或点击让TextField失去焦点
2020-12-19
macOS SwiftUI 三栏App架构动态修改标题和设置工具栏
2020-12-19
macOS SwiftUI 设置窗体透明背景和特效
2020-12-19
macOS_SwiftUI_list.zip
2020-12-19
macOS SwiftUI LazyVGrid和LazyHGrid源码
2020-12-19
SwiftUI LazyVGrid和LazyHGrid 自定义对齐源码
2020-12-19
iOS Swift记忆益智游戏Memory Game完整源码
2020-12-19
macOS SwiftUI文本编辑器含代码
2020-12-18
macOS SwiftUI教程之点击获取位置 ClickGestureRecognizer
2020-12-18
macOS SwiftUI tabView构建切换组件
2020-12-18
SwiftUI TabView 构建滚动轮播图PagedTabViewStyle
2020-12-18
macOS SwiftUI动画教程之淡入淡出组件
2020-12-14
macOS SwiftUI教程之绘制垂直虚线Dash
2020-12-13
macOS SwiftUI教程之绘制楔形体(Wedge)图WedgeChart
2020-12-13
macOS SwiftUI完整代码之绘制柱状图
2020-12-13
iOS Swift Core Location完整案例代码
2020-12-12
SwiftUI watchOS成品代码之NBA Draft比赛App
2020-12-12
SwiftUI完成代码之Sport App运动新闻App
2020-12-12
SwiftUI完成代码之Financial App 卡管理Core Data数据库
2020-12-12
macOS SwiftUI教程之绘制百分比多彩饼图
2020-12-12
macOS SwiftUI教程之绘制Path绘制饼图
2020-12-12
macOS SwiftUI教程之绘制曲线
2020-12-12
macOS SwiftUI教程之绘制矩形Path
2020-12-12
macOS SwiftUI教程服务共享 NSSharingServicePicker完整代码
2020-12-12
SwiftUI CoreData增删改查完整代码
2020-12-09
macOS SwiftUI文件打开教程FileDialog项目含源码
2020-12-09
Wordpress入门书籍哪些最值得看
2021-05-30
请问wordpress,使用markdown生成页面如何跳转url?
2021-05-30
TA创建的收藏夹 TA关注的收藏夹
TA关注的人