傅里叶分析笔记

本文详细介绍了傅里叶分析的基本思想,通过解析周期信号如何用正弦信号线性组合表示,阐述了傅里叶级数的概念。文中通过具体的数学推导,展示了如何求解傅里叶系数,并探讨了奇偶函数的傅里叶级数特性,同时涵盖了不同周期函数的傅里叶级数展开。
摘要由CSDN通过智能技术生成

  由于工作中经常会用到傅里叶分析方法、不得不对它基本思想做一些深入的思考。这里记录下我对傅立叶分析的学习过程中真正加深自己印象的一些推导过程,希望对其它朋友能有所帮助、初学时,能看些浅显易懂的图文分析对理解的帮助是非常大的,至少能让你很快的理解主要思路而不至于陷入大量的公式推导之中,但初步理解了之后,要深入下去,是应该好好理解下推导过程的。

  傅里叶分析法建立在一个基本的认知基础之上:周期信号可以用多个正弦信号的线性组合来表示。周期信号的这种分解,被称为傅里叶级数。下面我们就来分析下这种分解过程。

  给定一个最简单的正弦信号

  \[y(t) = A\sin (\omega t + \theta )\]

  其中周期T=2*PI/ω,将这个信号展开成由一系列以T为周期的正弦函数组成的级数来表示,记为

  \[f(t) = {A_0} + \sum\limits_{n = 1}^\infty  { {A_n}\sin (n\omega t + {\theta _n})} \]

  然后我们将正弦函数进行三角变形

\[{A_n}\sin (n\omega t + {\theta _n}) = {A_n}\sin {\theta _n}\cos (n\omega t) + {A_n}\cos {\theta _n}\sin (n\omega t)\]

  同时,再令:

\[\begin{array}{*{20}{c}}
   {\frac{ { {a_0}}}{2} = {A_0}} & { {a_n} = {A_n}\sin {\theta _n}} & { {b_n} = {A_n}\cos {\theta _n}} & {\omega t = x}  \\
\end{array}\]

  则上式最终可以写为

\[f(x) = \frac{ { {a_0}}}{2} + \sum\limits_{n = 1}^\infty  {\left[ { {a_n}\cos (nx) + {b_n}\sin (nx)} \right]} \]

  从上式可以看出,只要确定了a0、an、bn这三个参数,函数f(x)就可以确定下来,在求这三个参数的过程中,积分将变的十分有用,先来求a0,对上式从-PI到PI的逐项积分。
\[\int_{ - \pi }^\pi  {f(x)} dx = \int_{ - \pi }^\pi  {\frac{ { {a_0}}}{2}dx + \sum\limits_{k = 1}^\infty  {\left[ { {a_k}\int_{ - \pi }^\pi  {\cos kxdx + {b_k}\int_{ - \pi }^\pi  {\sin kxdx} } } \right]} } \]

  根据三角函数系的正交性(三角函

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值