1_傅立叶笔记:基础知识

这篇博文介绍了傅立叶分析的基础知识,包括三角函数的正交性,傅立叶级数的表示形式,以及狄拉克函数和狄拉克梳状函数的相关概念。通过学习,可以理解傅立叶变换背后的正交函数基和函数空间,为后续的傅立叶变换和傅立叶级数奠定基础。
摘要由CSDN通过智能技术生成

写在前面: 疫情期间一直在家自习《信号与系统》,查阅了很多网上的资料,特此整理成博文以备复习。

三角函数系的正交性

对集合:{1,cosx,sinx,cos2x,sin2x,…,coskx,sinkx,…}, k ∈ N k\in N kN。满足性质:
∫ − π π s i n k x dx = 0 ∫ − π π c o s k x dx = 0 \int_{-\pi}^{\pi}sinkx \textrm{\bf{dx}}=0 \qquad \int_{-\pi}^{\pi}coskx \textrm{\bf{dx}}=0 ππsinkxdx=0ππcoskxdx=0
根据上述性质可进一步推导得到如下性质:( m ≠ n , m , n ∈ N m\neq n,m,n\in N m=n,m,nN)
∫ − π π c o s ( m x ) c o s ( n x ) dx = 0 ∫ − π π s i n ( m x ) s i n ( n x ) dx = 0 \int_{-\pi}^{\pi}cos(mx)cos(nx) \textrm{\bf{dx}}=0 \qquad \int_{-\pi}^{\pi}sin(mx)sin(nx) \textrm{\bf{dx}}=0 ππcos(mx)cos(nx)dx=0ππsin(mx)sin(nx)dx=0
且:( m , n ∈ N m,n\in N m,nN)
∫ − π π s i n ( m x ) c o s ( n x ) dx = 0 \int_{-\pi}^{\pi}sin(mx)cos(nx) \textrm{\bf{dx}}=0 ππsin(mx)cos(nx)dx=0
证明的话利用三角函数和差化积or积化和差公式即可。上述性质在复指数表达式中同样成立,这里仅举一例说明:( m ≠ n m\neq n m=n)
∫ − π π e j ( m − n ) t dx = 0 \int_{-\pi}^{\pi}e^{j(m-n)t}\textrm{\bf{dx}}=0 ππej(mn)tdx=0
如果想要更加深刻地理解并记忆这些性质,推荐阅读傅里叶变换后面的到底有什么小秘密Jason Huang的回答。这两篇文章介绍了正交函数基和函数空间的概念,甚至涉及了实变函数的一些知识。而理解这些有助于我们推导出下面一个性质,日后证明傅立叶变换时需要用到。网上查了好多好多资料其实都没点到这个性质:在广义函数定义下,有如下等式成立:
∫ − ∞ + ∞ e j ( ω 1 − ω 2 ) t dt = { 2 π δ ( ω 1 − ω 2 ) ω 1 = ω 2 0 ω 1 ≠ ω 2 \int_{-\infty}^{+\infty}e^{j(\omega_1-\omega_2)t}\textrm{\bf{dt}}=\left\{\begin{matrix} 2\pi\delta(\omega_1-\omega_2)&\omega_1=\omega_2 \\ 0&\omega_1\neq \omega_2 \end{matrix}\right. +

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值