杭电2266 How Many Equations Can You Find

 How Many Equations Can You Find
Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u

Description

Now give you an string which only contains 0, 1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ,9.You are asked to add the sign ‘+’ or ’-’ between the characters. Just like give you a string “12345”, you can work out a string “123+4-5”. Now give you an integer N, please tell me how many ways can you find to make the result of the string equal to N .You can only choose at most one sign between two adjacent characters.

Input

Each case contains a string s and a number N . You may be sure the length of the string will not exceed 12 and the absolute value of N will not exceed 999999999999.

Output

The output contains one line for each data set : the number of ways you can find to make the equation.

Sample Input

123456789 3
21 1

Sample Output

18
1
深搜,计算每种可能情况的值
     
     
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
#include<iostream>
#include<string>
#include<algorithm>
using namespace std;
string s;
long n;
int cot;//方案数
long shu(int c,int e)//计算数值 
{
long sum=0;
	for(;c<=e;c++)
	sum=sum*10+s[c]-'0';
	return sum;
 }
 void dfs(int result,int c)//c表示字符位置 
 {
 	if(c>=s.length())//计算到字符串末尾 
 	{
 		if(result==n)
 		cot++;
	 }
	 else
	 {
	 for(int i=c;i<s.length();i++)
	 {
	 	dfs(result+shu(c,i),i+1);
	 	if(c!=0)//第一位前不能加- 
	 	dfs(result-shu(c,i),i+1);
		 }	
	 }
  }
  int main()
 {
 	while(cin>>s>>n)
 	{
 		cot=0;
 		dfs(0,0);
 		cout<<cot<<endl;
	 }
	 return 0;
  } 


### 回答1: 你可以使用 numpy 库中的 linalg.lstsq() 函数来解决超定方程组。具体步骤如下: 1. 将超定方程组表示为矩阵形式 Ax = b,其中 A 是 m 行 n 列的系数矩阵,x 是 n 维未知向量,b 是 m 维常数向量。 2. 使用 linalg.lstsq() 函数求解 x,该函数的参数为 A 和 b。 3. 检查解是否存在,如果存在,则输出解 x;如果不存在,则说明方程组无解或有无穷多解。 注意:在使用 linalg.lstsq() 函数时,需要注意矩阵 A 的秩是否等于 n,如果不等于,则说明方程组无解或有无穷多解。 ### 回答2: 使用Python解决超定方程的步骤如下: 1. 导入所需的库:首先,需要导入numpy库,以便在Python中使用矩阵和向量的功能。 ``` import numpy as np ``` 2. 定义方程:将超定方程表示为矩阵形式,其中方程的系数作为矩阵的元素,等式的右侧作为结果向量。 ``` A = np.array([[1, 2], [3, 4], [5, 6]]) b = np.array([7, 8, 9]) ``` 3. 求解方程:使用numpy库的线性代数模块中的函数`lstsq()`来求解超定方程。该函数将返回最小二乘解向量x。 ``` x = np.linalg.lstsq(A, b, rcond=None)[0] ``` 4. 打印解向量:最后,将解向量打印出来以查看结果。 ``` print(x) ``` 完整的代码示例: ``` import numpy as np A = np.array([[1, 2], [3, 4], [5, 6]]) b = np.array([7, 8, 9]) x = np.linalg.lstsq(A, b, rcond=None)[0] print(x) ``` 此代码将返回超定方程的最小二乘解向量x。 ### 回答3: 要用Python解决一个过度确定方程组,可以使用线性代数库NumPy和SciPy中的函数来实现。下面是一种可能的解决方案: 1. 首先,安装NumPy和SciPy库,可以使用pip命令在命令行中执行以下命令: ``` pip install numpy scipy ``` 2. 创建一个Python脚本文件,并在文件开头引入NumPy和SciPy库: ```python import numpy as np from scipy.linalg import lstsq ``` 3. 定义过度确定方程组的系数矩阵A和结果向量b。可以将它们表示为NumPy数组: ```python A = np.array([[2, 3], [4, 5], [6, 7], [8, 9]]) b = np.array([10, 20, 30, 40]) ``` 4. 使用lstsq函数来解决过度确定方程组。该函数返回一个包含最小二乘解的数组x,以及一些其他信息: ```python x, residuals, rank, s = lstsq(A, b) ``` 在上述代码中,x是解向量,residuals是残差(方程组的近似度量),rank是系数矩阵的秩,s是系数矩阵的奇异值。 5. 打印解向量x: ```python print("Solution vector:") print(x) ``` 这将输出解向量x的值。 6. 运行Python脚本,即可得到过度确定方程组的解。 上述步骤展示了如何使用Python中的NumPy和SciPy库来解决过度确定方程组。这种方法适用于大多数线性方程组,但对于非线性方程组,需要使用其他方法来解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值