无向图的双连通性

目录

无向图的双连通性

  • 相关概念
  • 关节点:若在删去顶点a以及与之相邻的边之后,图G被分割成两个或
    两个以上的连通分量,则顶点a为连通无向图的关节点
    删除a或者c之后,a,c是关节点
  • 双连通图:没有关节点的连通图称为双连通图( Biconnected Graph) 。
  • 等价边集:称连通图G=(V, E)的边e1 和 e2 是等价的,若 e1=e2 或者有一条环路包含 e1又包含 e2 。
  • 双连通分量:设 Vi是等价边集 Ei 中各边所连接的顶点集( 1≤i≤k) , 每个图Gi = ( Vi, Ei ) 叫做 G 的一个双连通分量。
  • 在双连通图上, 任何一对顶点之间至少存在有两条路径,在删
    去某个顶点及与该顶点相关联的边时, 也不破坏图的连通性。
  • 双连通的无向图是连通的,但连通的无向图未必双连通。
    -如果连通图不是双连通图,则它可以包括几个双连通分量。
  • 关节点性质
  • 由关节点可以判断图是否双联通
  • 深度优先生成树可得出两类关节点的特性:
  • 第一类关节点:若生成树的根有两株或两株以上子树, 则此根结点必为关节( 第一类关节点) 。 因为图中不存在连接不同子树中顶点的边, 因此, 若删去根顶点, 生成树变成生成森林。
  • 第二类关节点:若生成树中非叶顶点v,其某株子树的根和子树中的其它结点均没有指向v 的祖先的回退边,则v 是关节点( 第二类关节点)。因为删去v,则其子树和图的其它部分被分割开来。
  • 无回退边

R.Tarjan算法–求关节点的算法

  1. 计算先深编号: 对图进行先深搜索, 计算每个结点v的先深编号dfn[v],形成先深生成树S=(V,T)。
  2. 计算low[v]:在先深生成树上按后根遍历顺序进行计算每个顶点v的 low[v] , low[v]取下述三个结点中的最小者:
    dfn[v];
    dfn[w], 凡是有回退边(v,w)的任何结点w;
    low[y],对v的任何儿子y。
    若某个顶点V,存在孩子结点y,且low[y]>=dfn[v],则v必为关节点。因为此时表明,y及其子孙均无指向V的祖先的回退边
    3.求关节点:
    3.1 树根是关节点,当且仅当它有两个或两个以上的儿子(第一类关节点);
    3.2 非树根结点v是关节点当且仅当v有某个儿子y,使low[y]≥dfn[v] (第二类关节点)
    时间复杂度:O(n+e)
  3. 示例:
    注:连通图:G=(V,E),先深生成树:S=(V,T),回退边之集:B
    按后根遍历顺序计算low[v]编号和求关节点
    一个示例
    结论:
    1.根结点a有两个孩子,是关节点;
    2.(c, f)是树边即f是c的孩子且low[f] ≥ dnf[c],所以c是关节点。
  4. 求关节点的R.Tarjan算法实现—同先深搜索算法

代码实现

void FindArticul(AdjGraph G)
{ 
/*连通图G 以邻接表作存储结构,查找并输出G 上全部关节点*/
count=1; /*全局变量count 用于对访问计数*/
dfn[0] =1; /*设定邻接表上0 号顶点为生成树的根*/
for(i=1;i<G.n;++i) dfn[i]=0; /*其余顶点尚未访问, dfn[]兼职visited[]*/
p=G.vexlist[0].firstedge; v=p->adjvex;
DFSArticul(v); /*从顶点v 出发深度优先查找关节点**/
if(count<G.n) { 
/*生成树的根至少有两棵子树*/
cout<<G.vexlist[0].vertex); /*根是关节点,输出*/
while(p->next) {
p=p->next;
v p =p->adjve ; x;
if(dfn[v]==0) DFSArticul(v);
}//while
}//if
} //FindArticul
void DFSArticul(int v0)
/*从顶点v0 出发深度优先遍历图G,计算low[],查找并输出关节点 */
{ dnf[v0]=min=count++; /*v0 是第count 个访问的顶点*/
for(p=G.vexlist[v0].firstedge; p; p=p->next) /*对v0 的每个邻接点检查*/
{ w=p->adjvex; /*w 为v0 的邻接点*/
if(dnf[w]==0) /*若w 未曾访问,则w 为v0 的孩子*/
{ DFSArticul(w); /*返回前求得low[w]*/
if(low[w]<min) min=low[w];
if(low[w]>=dfn[v0])
cout<<G vexlist[v0] vertex); / .vexlist[v0].vertex); /*输出关节点*/
}
else if(dfn[w]<min) min=dfn[w];
/*w 已访问, w 是v0 在生成树上的祖先*/
}//for
low[v0]=min;
}//DFSArticul
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值