信息安全(一)之群、环、域基础相关理论

群、环、域基础相关理论

封闭性: 对于数据集S的运算 × \times × 满足 S × S → S S \times S \rightarrow S S×SS ,即为在数据集 S 上的运算结果仍然在数据集S中,成数据集S对运算 × \times × 满足封闭性。
代数系统: 在数据集S中,如果数据集S对于运算 × \times × 满足封闭性,那么<S , × \times ×> 称为代数系统。(S不为空,运算 × \times ×存在, 封闭性)
结合律(C1): 在代数系统S中,任意的 a , b , c ∈ S a,b,c \in S a,b,cS,都有 ( a b ) c = a ( b c ) (ab)c = a(bc) (ab)c=a(bc),那么就称代数系统S满足结合律。
单位元(C2): 在代数系统S中,存在一个元素 e ∈ S e \in S eS,使得对S中所有的元素a,都有 e a = a e = a ea = ae = a ea=ae=a, 那么e就称为代数系统S的单位元(单位元是唯一的)。
可逆元(C3): 在存在单位元 e 的代数系统S中,设a是S中的一个元素,如果S中存在一个元素 a ′ a^{'} a使得 a a ′ aa^{'} aa = a ′ a = e a^{'}a = e aa=e ,则成元素a为S中的可逆元, a ′ a^{'} a称为a的逆元,通常记为 a − 1 a^{-1} a1.
交换律(C4): 在代数系统S中,如果对于S中的任意元素a,b都有 b a = a b ba = ab ba=ab,则称代数系统S 满足交换律。

半群: 满足结合律的代数系统称为半群。
可交换半群: 满足交换律的半群,称为可交换半群。
群: 代数系统G满足结合律,单位元,可逆性(对于 ∀ a ∈ G \forall a \in G aG,都存在 a ′ ∈ G a^{'} \in G aG,使得 a a ′ = a ′ a = e aa^{'} = a ^{'} a = e aa=aa=e, 即为G中任意元素存在逆元), 则称 G G G为群。 群G中元素的个数称为群的,记为 ∣ G ∣ |G| G, 当 ∣ G ∣ |G| G为有限的数字时,称 G G G为有限群;反之,称 ∣ G ∣ |G| G为无限群。
交换群(阿倍尔(Abel)群): 当群G满足交换律时,称为交换群(阿倍尔(Abel)群)。
一般线性群: 可逆矩阵A所组成的集合,记为 G L n ( P ) GL_{n} (P) GLn(P),对于矩阵的乘法构成一个群,通常称 G L n ( K ) GL_{n} (K) GLn(K) 为n级一般线性群 G L n ( K ) GL_{n} (K) GLn(K) 中全体行列式为1的矩阵对于矩阵乘法也成一个群,这个群记为 S L n ( K ) SL_{n} (K) SLn(K), 称为特殊线性群
对称群: 设S是一个非空集合, G是S到自身的所有一一映射f所组成的集合。对于 f , g ∈ G f,g\in G f,gG,定义f和g的复合映射为:对于 ∀ x ∈ S , ( g ∘ f ) ( x ) = g ( f ( x ) ) \forall x\in S, (g\circ f)(x)=g(f(x)) xS,gf)(x)=g(f(x)),则G对于映射的复合运算,构成一个群,叫做对称群。恒等映射是单位元,G中的元素叫做S的一个置换。当S是n元有限集时,G叫做n元对称群,记做 S n S_n Sn.
子群: 设H是群G的一个子集。如果对于群G的运算,H构成一个群,那么H叫做群G的子群,记做 H ≤ G H\leq G HG. H = e H={e} H=e H = G H=G H=G都是群G的子群,叫做群G的平凡子群。群G的子群H叫做群G的真子群,如果H不是群G的平凡子群。子群的判断:设H是群G的一个非空子集合,则H是群G的子群的充要条件是:对 ∀ a , b ∈ H \forall a,b\in H a,bH, 有 a b − 1 ∈ H ab^{-1}\in H ab1H.

同态和同构

同态和同构: 设 G , G ′ G,G^{'} G,G都是群,f是 G G G G ′ G^{'} G的一个映射,如果对于任意的 a , b ∈ G a,b\in G a,bG,都有 f ( a b ) = f ( a ) f ( b ) f(ab)=f(a)f(b) f(ab)=f(a)f(b),那么 f f f叫做 G G G G ′ G^{'} G 的一个同态。如果 f f f是一对一的,则称 f f f为单同态。如果 f f f是满射,则称为满同态,如果 f f f是一一对应的,则称f为同构。当 G = G ′ G=G^{'} G=G时,同态 f f f叫做自同态,同构 f f f叫做自同构。

环的相关定义 设代数系统S是具有两种运算(一般表示为加法和乘法)的非空集合。对于以下条件:

  1. S对于加法构成一个交换群。(加法构成交换群)
  2. 对于任意的 a , b , c ∈ S a,b,c\in S a,b,cS,有(ab)c=a(bc)。(乘法的结合律)
  3. 对任意的 a , b , c ∈ S a,b,c\in S a,b,cS,有 ( a + b ) c = a c + b c (a+b)c=ac+bc (a+b)c=ac+bc a ( b + c ) = a b + a c a(b+c)=ab+ac a(b+c)=ab+ac.(加法对乘法的分配率。)
    满足1,2,3, 则S被称为环。
  4. 如果 ∀ a , b ∈ S \forall a,b \in S a,bS, 有ab = ba。(乘法的交换律)
    满足1,2,3,4, 则S叫做交换环
  5. 如果R中存在一个元素 e = 1 R e=1_R e=1R使得: ∀ a ∈ R \forall a\in R aR, 有 a 1 R = 1 R a = a a1_{R} = 1_{R} a=a a1R=1Ra=a.
    满足1,2,3,4,5, 则S叫做由单位元环。
  6. 设S是环。S中非零元a称为左零因子(对应的有右零因子),如果存在非零元 b ∈ S b\in S bS 对应的有 c ∈ S c\in S cS)使得ab=0(对应的有 c a = 0 ca=0 ca=0),a称为零因子,如果它同时是左零因子和右零因子,则称S为有零因子环。
  7. 设S是有单位元 1 R 1_R 1R的环。R中元a称为左逆元(对应的有右逆元),如果存在元素 b ∈ R b\in R bR(对应的有 c ∈ R c\in R cR)使得 a b = 1 R ab=1_R ab=1R(对应的有 c a = 1 R ca=1_R ca=1R).这时,b(d对应的有c),叫做a的右逆(对应的有左逆)。a称为左逆元和右逆元。
  8. 设R是一个交换环,则称R为整环,如果R中有单位元,但没有零因子。
  9. 称交换环K为一个域,如果K中有单位元,且每个非零元都是可逆元,则K对于加法构成一个交换群, K ∗ = K / { 0 } K^* = K / \{ 0 \} K=K/{0}(应该是右斜没打出来),对于乘法构成一个交换群。总结,交换环K满足每一个元素存在可逆元,乘法去除零因子后构成交换群。

环的性质

  1. ∀ a ∈ R \forall a\in R aR, 有 0 a = a 0 = 0 0a=a0=0 0a=a0=0.
  2. ∀ a , b ∈ R \forall a,b \in R a,bR, 有 ( − a ) b = a ( − b ) = − a b (-a)b=a(-b)=-ab (a)b=a(b)=ab.
  3. ∀ a , b ∈ R \forall a,b \in R a,bR, 有 ( − a ) ( − b ) = a b (-a)(-b)=ab (a)(b)=ab.
  4. ∀ n ∈ Z \forall n \in Z nZ, ∀ a , b ∈ R \forall a,b\in R a,bR,有 ( n a ) b = a ( n b ) = n a b (na)b=a(nb)=nab (na)b=a(nb)=nab.
  5. ∀ a i , b j ∈ R \forall a_i, b_j \in R ai,bjR,有 ( ∑ i = 1 n a i ) ( ∑ j = 1 m b j ) = ∑ i = 1 n ∑ j = 1 m a i b j (\sum\limits_{i=1}^na_i)(\sum\limits_{j=1}^mb_j)=\sum\limits_{i=1}^n\sum\limits_{j=1}^ma_ib_j (i=1nai)(j=1mbj)=i=1nj=1maibj.
  6. 环的同态:
    R , R ′ R, R^{'} R,R是两个环,称映射 f : R → R ′ f:R\rightarrow R^{'} f:RR为环同态,如果 f f f满足以下条件:
    (i) 对 ∀ a , b ∈ R \forall a,b \in R a,bR, 有 f ( a + b ) = f ( a ) + f ( b ) f(a+b)=f(a)+f(b) f(a+b)=f(a)+f(b);
    (ii)对 ∀ a , b ∈ R \forall a,b \in R a,bR,有 f ( a b ) = f ( a ) + f ( b ) f(ab)=f(a)+f(b) f(ab)=f(a)+f(b);
    如果f是一对一的,则称f为单同态;如果f是满射则称f为满同态;如果f是一一对应的,则称f为同构。
  7. 环的理想:
    设R是一个环,I是R的子环。
    左理想:如果 ∀ r ∈ R \forall r\in R rR ∀ a ∈ I \forall a\in I aI,都有 r a ∈ I ra\in I raI,则称I为R的左理想。
    右理想:如果 ∀ r ∈ R \forall r\in R rR ∀ a ∈ I \forall a\in I aI,都有 a r ∈ I ar\in I arI,则称I为R的右理想。
    理想:如果I同时为R的左理想和右理想,则I称为R的理想。
  8. 多项式环:
    设R是整环, x x x为变量,则在 R R R中形为 a n x n + a n − 1 x n − 1 + … + a 1 x + a 0 , a i ∈ R a_nx_n + a_{n-1}x^{n-1}+ \ldots + a_1x + a_0, a_i \in R anxn+an1xn1++a1x+a0,aiR,的元素称为R上的多项式。则当 a n ≠ 0 a_n \neq 0 an=0时,多项式 f ( x ) f(x) f(x)的次数为 n n n,记为 d e g f = n deg f = n degf=n.
    多项式整除:设 f ( x ) , g ( x ) f(x),g(x) f(x),g(x)是整环R上的任意两个多项式,其中 g ( x ) ≠ 0 g(x) \neq 0 g(x)=0.如果存在一个多项式 q ( x ) q(x) q(x)使得等式 f ( x ) = q ( x ) ⋅ g ( x ) f(x)=q(x)\cdot g(x) f(x)=q(x)g(x)成立,就称 g ( x ) g(x) g(x)整除 f ( x ) f(x) f(x)或者 f ( x ) f(x) f(x) g ( x ) g(x) g(x)整除。这时把 g ( x ) g(x) g(x)叫做 f ( x ) f(x) f(x)的因式,把 f ( x ) f(x) f(x)叫做 g ( x ) g(x) g(x)的倍式。否则,就称 g ( x ) g(x) g(x)不能整除 f ( x ) f(x) f(x)或者 f ( x ) f(x) f(x)不能被 g ( x ) g(x) g(x)整除,记做 g ( x ) ∤ f ( x ) g(x)\nmid f(x) g(x)f(x).
    不可约多项式:设f(x)是整环R上的非常数多项式。如果除了显然因式1和 f ( x ) f(x) f(x)外, f ( x ) f(x) f(x)没有其它非常数因式,那么, f ( x ) f(x) f(x)就叫做不可约多项式或既约多项式,否则,f(x)叫做合式。

五元组 ( F , + , ⋅ , 0 , 1 ) (F, +, \cdot, 0, 1 ) (F,+,,0,1)中,F为集合,+和 ⋅ \cdot 为集合F上的二元运算,0和1为F中元素,若 ( F , + , ⋅ , 0 , 1 ) (F, +, \cdot, 0, 1 ) (F,+,,0,1)满足:
F1(加法交换群):(F, + , 0)是交换群。
F2(乘法交换群): ( F ∗ , ⋅ , 1 ) (F^*, \cdot, 1) (F,,1)是交换群, F ∗ = F − 0 F^* = F - 0 F=F0
.
F3(乘法对加法的分配率): a ⋅ ( b + c ) = a ⋅ b + a ⋅ c a\cdot(b+c)=a\cdot b+a\cdot c a(b+c)=ab+ac,
则称 ( F , + , ⋅ , 0 , 1 ) (F, +, \cdot, 0, 1 ) (F,+,,0,1)为域。

域的基本性质

F F F是域,那么F中以下运算规则成立:
加法消去律:设 a , b , c ∈ F a,b,c\in F a,b,cF,且 a + c = b + c a+c=b+c a+c=b+c,则一定有 a = b a=b a=b.
乘法消去律:设 a , b , c ∈ F a,b,c\in F a,b,cF,且 c ≠ 0 c\neq 0 c=0,如果 a ⋅ c = b ⋅ c a\cdot c = b\cdot c ac=bc,则一定a = b.
对于任意的 a ∈ F a\in F aF,都有 − ( − a ) = a -(-a) = a (a)=a.
对于任意的 a ∈ F a\in F aF,且 a ≠ 0 a\neq 0 a=0,都有 ( a − 1 ) − 1 = a (a^{-1})^{-1}=a (a1)1=a.
对于任意的 a ∈ F a\in F aF,都有 a ⋅ 0 = 0 a\cdot 0 = 0 a0=0.
对于任意的 a , b ∈ F a,b\in F a,bF,若KaTeX parse error: Undefined control sequence: \cdotb at position 2: a\̲c̲d̲o̲t̲b̲=0,则一定有 a = 0 a =0 a=0 b = 0 b=0 b=0.
对于任意的 a , b ∈ F a,b\in F a,bF,都有 − ( a + b ) = ( − a ) + ( − b ) -(a+b) = (-a)+(-b) (a+b)=(a)+(b).
对于任意的 a , b ∈ F a,b\in F a,bF,都有 a ⋅ ( − b ) = ( − a ) ⋅ b = − a ⋅ b a\cdot (-b)=(-a)\cdot b=-a\cdot b a(b)=(a)b=ab
对于任意的 a , b ∈ F a,b\in F a,bF,都有 ( − a ) ⋅ ( − b ) = a ⋅ b (-a)\cdot (-b)=a\cdot b (a)(b)=ab.
对于任意的 a , b ∈ F a,b\in F a,bF,且 a ≠ 0 , b ≠ 0 a\neq0, b\neq 0 a=0,b=0,都有 ( a ⋅ b ) − 1 = a − 1 ⋅ b − 1 (a\cdot b)^{-1} = a^{-1}\cdot b^{-1} (ab)1=a1b1.
对于任意的 a ∈ F a\in F aF,且 a ≠ 0 a\neq 0 a=0,都有 ( − a ) − 1 = − a − 1 (-a)^{-1}=-a^{-1} (a)1=a1.
如果 f ( x ) f(x) f(x) g ( x ) g(x) g(x)不全为0,则 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的公因式中次数最高的首1多项式称为 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的最高公因式。
如果 f ( x ) f(x) f(x) g ( x ) g(x) g(x)不全为0,则 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的公倍式中次数最高的首1多项式称为 f ( x ) f(x) f(x) g ( x ) g(x) g(x)的最高公倍式。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值