0 群
群的定义(群的公理):
我们将满足以下公理的集合G称为群:
0.关于运算*是闭集。(运算*为广义运算)
1.对于任意的元,都满足结合律。
2.存在单位元。
3.对于任意的元,都有与其对应的逆元。
如果在群的基础上,再满足交换律(a运算b = b 运算 a),我们称这种群叫做阿贝尔群。
半群:满足条件0和条件1的集合称为半群。
群的例子:整数群
0.对于任何两个整数a和b,它们的和也是整数。满足条件0,关于运算+是闭集;
1.对于任何整数a,b和c,(a + b) + c=a + (b + c)。满足条件1,关于运算+满足结合律;
2.对于任何整数a,0 + a = a + 0 = a;
3.对于任何整数a,存在另一个整数b使得a + b = b + a = 0。整数b叫做整数a的逆元,记为-a。
1 环
环的定义(环的公理):