群、环、域基础与例子

0 群

群的定义(群的公理):

        我们将满足以下公理的集合G称为群:
                0.关于运算*是闭集。(运算*为广义运算)
                1.对于任意的元,都满足结合律。
                2.存在单位元。
                3.对于任意的元,都有与其对应的逆元。

        如果在群的基础上,再满足交换律(a运算b = b 运算 a),我们称这种群叫做阿贝尔群。

        半群:满足条件0和条件1的集合称为半群。

        群的例子:整数群
                0.对于任何两个整数a和b,它们的和也是整数。满足条件0,关于运算+是闭集;
                1.对于任何整数a,b和c,(a + b) + c=a + (b + c)。满足条件1,关于运算+满足结合律;
                2.对于任何整数a,0 + a = a + 0 = a;
                3.对于任何整数a,存在另一个整数b使得a + b = b + a = 0。整数b叫做整数a的逆元,记为-a。

1 环

环的定义(环的公理):

        我们将满足以下公理的集合G称为环:
                0.关于运算+(广义运算):
                       0.0.闭集
                       0.1.存在单位元
                       0.2.所有元素都满足结合律
                       0.3.所有元素都满足交换律
                       0.4.所有元素都存在与其对应的逆元
                 1.关于运算×(广义运算,区别于前面的运算+):
                       1.0.闭集
                       1.1.存在单位元
                       1.2.所有元素都满足结合律
                       1.3.所有元素都满足交换律
                  2.关于运算+和×(前面的两种运算):
                       2.0.所有元素都满足分配律

         在前面群和半群的定义基础上,环还可以如下定义:
                  0.关于运算+(广义运算),(G,+)为阿贝尔群(交换群);
                  1.关于运算×(广义运算,区别于前面的运算+),(G,×)为半群;
                  2.×对+适用分配律:a(b + c) = ab + ac.

         环的例子:整数环
         集合Z(整数集)对于运算+(数学加法)是一个阿贝尔群;对于运算×(数学乘法)是一个半群;所以集合Z是一个环(整数环)

2 域

域的定义(域的公理):

       我们将满足以下公理的集合G称为域:
                0.关于运算+(广义运算):
                       0.0.闭集
                       0.1.存在单位元
                       0.2.所有元素都满足结合律
                       0.3.所有元素都满足交换律
                       0.4.所有元素都存在与其对应的逆元
                 1.关于运算×(广义运算,区别于前面的运算+):
                       1.0.闭集
                       1.1.存在单位元
                       1.2.所有元素都满足结合律
                       1.3.所有元素都满足交换律
                       1.4.除了0以外的所有元素都存在与其对应的逆元
                  2.关于运算+和×(前面的两种运算):
                       2.0.所有元素都满足分配律

         在前面的定义基础上,域还可以如下定义:
                  0.关于运算+(广义运算),(G,+)为阿贝尔群(交换群);
                  1.关于运算×(广义运算,区别于前面的运算+),(G-{0},×)为阿贝尔群;
                  2.×对+适用分配律:a(b + c) = ab + ac.

         域的例子:有理数域
         集合Q(有理数集)对于运算+(数学加法)是一个阿贝尔群;对于运算×(数学乘法)除开0以外是一个阿贝尔群;所以集合Q是一个域(有理数域)

有理数集合,实数集合,复数集合,这些都是无线域,在信息安全中没有什么实际意义

在信息安全中比较有用的是有限域,主要有素域、二进制域等等,之后会继续更新

 

  • 12
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值