群、环、域基础与例子

0 群

群的定义(群的公理):

        我们将满足以下公理的集合G称为群:
                0.关于运算*是闭集。(运算*为广义运算)
                1.对于任意的元,都满足结合律。
                2.存在单位元。
                3.对于任意的元,都有与其对应的逆元。

        如果在群的基础上,再满足交换律(a运算b = b 运算 a),我们称这种群叫做阿贝尔群。

        半群:满足条件0和条件1的集合称为半群。

        群的例子:整数群
                0.对于任何两个整数a和b,它们的和也是整数。满足条件0,关于运算+是闭集;
                1.对于任何整数a,b和c,(a + b) + c=a + (b + c)。满足条件1,关于运算+满足结合律;
                2.对于任何整数a,0 + a = a + 0 = a;
                3.对于任何整数a,存在另一个整数b使得a + b = b + a = 0。整数b叫做整数a的逆元,记为-a。

1 环

环的定义(环的公理):

       

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值