11、基于Apache Mahout的推荐引擎与欺诈异常检测

基于Apache Mahout的推荐引擎与欺诈异常检测

1. Apache Mahout推荐引擎评估

在构建推荐引擎时,我们需要确保返回的推荐是有意义的。最可靠的方法是在实际系统中对真实用户进行A/B测试,例如A组接收随机推荐的物品,B组接收推荐引擎推荐的物品。但这种方法并不总是可行或实际的,因此我们可以通过离线统计评估来进行估计。

一种常用的方法是使用k折交叉验证,将数据集划分为多个子集,一部分用于训练推荐引擎,其余部分用于测试其对未知用户的推荐效果。

Mahout实现了 RecommenderEvaluator 类,它将数据集分为两部分。默认情况下,90%的数据用于生成推荐,其余数据与估计的偏好值进行比较以测试匹配度。该类不直接接受推荐器对象,而是需要实现 RecommenderBuilder 接口的类来构建推荐器对象进行测试。

以下是具体实现步骤:
1. 创建一个实现 RecommenderBuilder 接口的类:

public class BookRecommender implements RecommenderBuilder  {
    public Recommender buildRecommender(DataModel dataModel) {
        UserSimilarity similarity = 
            new PearsonCorrelationSimilarity(model);
        UserNeighbor
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值