Python数据挖掘—电力窃漏电用户自动识别

实验有两个部分:

1.    利用拉格朗日差值法进行缺失值的补充

2.    构建分类模型对窃电用户进行识别

(一)     用户的用电数据存在缺失值,数据见“test/data/missing_data.xls”,利用拉格朗日插值法补全数据。

(二)     对所有窃电用户及正常的用电的电量,警告及线损数据和该用户在当天是否窃电漏电的标识,按窃电漏电评价标准进行处理样本数据,得到专家样本,数据见“test/data/model.xls”,分别使用LM神经网络和CART决策树实现分类预测模型,利用混淆矩阵和ROC曲线对模型进行评价。

(数据80%作为训练样本,剩下的20%作为测试样本)

1、    实验方法与步骤

实验一:利用拉格朗日差值法进行缺失值的补充

(一)     打开PyCharm软件,把“test/data/missing_data.xls”放入当前工作目录。

(二)     使用Pandas把数据读入当前工作目录。

(三)     针对读入的数据的每一列,进行编程(拉格朗日算法)。

3.    实验二:构建分类模型对窃电用户进行识别

(一)     把经过预处理的专家样本数据“test/data/model.xls”数据放入当前工作目录,并使用Pandas读入当前工作空间。

(二)     把工作区间的建模数据随机分为两部分,一部分用于训练,一部分用于测试。

(三)     使用Scikit-Lrean库的sklearn.tree的DecisionTreeClassifier函数以及训练数据构建CART决策树模型,使用predict函数和构建的CART决策树模型分别对训练和测试数据进行分类,并与真实值比较,得到模型正确率,同时使用sklearn.metrics的confusion_maritx和roc_curve函数画混淆矩阵和ROC曲线图。

(四)     使用Keras库以及训练数据模型构建LM神经网络模型,使用predict函数和构建的神经网络模型分别对训练和测试数据进行分类,得到模型正确率,混淆矩阵和ROC曲线图。

(五)     对比分析CART决策树模型和LM神经网络模型针对专家样本数据处理结果的好坏。

1、    程序代码及运行结果

第一部分:利用拉格朗日差值法进行缺失值的补充

(1):利用Python对拉格朗日差值法进行应用

首先将缺失值数据导入:

#拉格朗日插值代码
import pandas as pd #导入数据分析库Pandas
from scipy.interpolate import lagrange #导入拉格朗日插值函数

inputfile = '../data/missing_data.xls' #输入数据路径,需要使用Excel格式;

缺失数据如下

235.8333

324.0343

478.3231

236.2708

325.6379

538.347

238.0521

328.0897

538.347

235.9063

538.347

236.7604

268.8324

538.347

404.048

538.347

237.4167

391.2652

538.347

238.6563

380.8241

538.347

237.6042

388.023

538.347

238.0313

206.4349

538.347

235.0729

538.347

235.5313

400.0787

538.347

411.2069

538.347

234.4688

395.2343

538.347

235.5

344.8221

538.347

235.6354

385.6432

538.347

234.5521

401.6234

538.347

236

409.6489

538.347

235.2396

416.8795

538.347

235.4896

538.347

236.9688

538.347

   针对读入数据的每一列,进行拉格朗日差值算法进行编程。

#-*- coding: utf-8 -*-
#拉格朗日插值代码
import pandas as pd #导入数据分析库Pandas
from scipy.interpolate import lagrange #导入拉格朗日插值函数

inputfile = '../data/missing_data.xls' #输入数据路径,需要使用Excel格式;
outputfile = '../tmp/missing_data_processed.xls' #输出数据路径,需要使用Excel格式

data = pd.read_excel(inputfile, header=None) #读入数据

#自定义列向量插值函数
#s为列向量,n为被插值的位置,k为取前后的数据个数,默认为5
def ployinterp_column(s, n, k=5):
  y = s[list(range(n-k, n)) + list(range(n+1, n+1+k))] #取数
y = y[y.notnull()] #剔除空值
return lagrange(y.index, list(y))(n) #插值并返回插值结果

#逐个元素判断是否需要插值
for i in data.columns:
for j in range(len(data)):
if (data[i].isnull())[j]: #如果为空即插值。
data[i][j] = ployinterp_column(data[i], j)

data.to_excel(outputfile, header=None, index=False) #输出结果

导出数据如下:

235.8333

324.0343

478.3231

236.2708

325.6379

515.4564

238.0521

328.0897

517.0909

235.9063

203.4621

514.89

236.7604

268.8324

493.3526

237.1512

404.048

486.0912

237.4167

391.2652

516.233

238.6563

380.8241

493.3424

237.6042

388.023

435.3508

238.0313

206.4349

487.675

235.0729

237.3481

609.1936

235.5313

400.0787

660.2347

235.315

411.2069

621.2346

234.4688

395.2343

611.3408

235.5

344.8221

643.0863

235.6354

385.6432

642.3482

234.5521

401.6234

618.1972

236

409.6489

602.9347

235.2396

416.8795

589.3457

235.4896

420.7486

556.3452

236.9688

408.9632

538.347

第二部分:构建分类模型对窃电用户进行识别

(1):数据划分

   对专家样本随机选取20%作为测试样本,剩下的80%作为训练样本

代码如下

import pandas as pd #导入数据分析库
from random import shuffle #导入随机函数shuffle,用来打算数据

datafile = '../data/model.xls' #数据名
treefile = '../tmp/tree.pkl' #模型输出名字
data =pd.read_excel(datafile) #读取数据,数据的前三列是特征,第四列是标签
data = data.as_matrix()#将表格转换为矩阵
shuffle(data) #随机打乱数据

p = 0.8 #设置训练数据比例
train = data[:int(len(data)*p), :] #前80%为训练集
test = data[int(len(data)*p):, :] #后20%为测试集

(2):Python导入CART决策树模型算法

from sklearn.tree import DecisionTreeClassifier #导入决策树模型

(3):Python导入混淆矩阵
fromsklearn.metricsimport confusion_matrix #导入混淆矩阵函数

(4):Python导入ROC曲线函数
from sklearn.metrics import roc_curve #导入ROC曲线函数

(5):Python实现dt_model

构建CART决策树模型及ROC曲线函数及混淆矩阵的完整代码如下:

#-*-coding: utf-8 -*-
#
构建并测试CART决策树模型

import pandas as pd #导入数据分析库
from random import shuffle #导入随机函数shuffle,用来打算数据

datafile = '../data/model.xls' #数据名
treefile = '../tmp/tree.pkl' #模型输出名字
data =pd.read_excel(datafile) #读取数据,数据的前三列是特征,第四列是标签
data =data.as_matrix() #将表格转换为矩阵
shuffle(data) #随机打乱数据

p = 0.8 #设置训练数据比例
train = data[:int(len(data)*p), :] #前80%为训练集
test = data[int(len(data)*p):, :] #后20%为测试集

from sklearn.tree import DecisionTreeClassifier #导入决策树模型
from sklearn.metrics import confusion_matrix #导入混淆矩阵函数

tree =DecisionTreeClassifier() #建立决策树模型
tree.fit(train[:,:3],train[:, 3]) #训练
#
保存模型
from sklearn.externals import joblib
joblib.dump(tree, treefile)

cm = confusion_matrix(train[:,
3], tree.predict(train[:, :3])) #混淆矩阵

import matplotlib.pyplot as plt #导入作图库
plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图,配色风格使用cm.Greens,更多风格请参考官网。
plt.colorbar() #颜色标签

for x in range(len(cm)): #数据标签
for y in range(len(cm)):
    plt.annotate(cm[x, y],
xy=(x, y), horizontalalignment='center', verticalalignment='center')

plt.ylabel(
'Truelabel') #坐标轴标签
plt.xlabel('Predicted label') #坐标轴标签
plt.show() #显示作图结果

from sklearn.metrics import roc_curve #导入ROC曲线函数

fpr, tpr,thresholds = roc_curve(test[:, 3], tree.predict_proba(test[:, :3])[:, 1], pos_label=1)
plt.plot(fpr, tpr,
linewidth=2, label = 'ROC of CART', color = 'green') #作出ROC曲线
plt.xlabel('False Positive Rate') #坐标轴标签
plt.ylabel('True Positive Rate') #坐标轴标签
plt.ylim(0, 1.05) #边界范围
plt.xlim(0, 1.05) #边界范围
plt.legend(loc=4) #图例
plt.show() #显示作图结果

 

dt_model.py代码的执行结果为:

混淆矩阵如下:


ROC of CART图如下:

(6):Python实现LM神经网络模型

库的导入:

from keras.models import Sequential #导入神经网络初始化函数
from keras.layers.core import Dense, Activation #导入神经网络层函数、激活函数

设置数据划分
import pandas as pd
from random import shuffle

datafile = '../data/model.xls'
data = pd.read_excel(datafile)
data = data.as_matrix()
shuffle(data)

p = 0.8  #设置训练数据比例
train = data[:int(len(data)*p), :]
test = data[int(len(data)*p):, :]

其他与构建CART模型相似,现给出最终代码,如下:

#-*-coding: utf-8 -*-
import os
import pandas as pd
from random import shuffle

datafile =
'../data/model.xls'
data = pd.read_excel(datafile)
data = data.as_matrix()
shuffle(data)

p =
0.8  #设置训练数据比例
train = data[:int(len(data)*p), :]
test = data[
int(len(data)*p):, :]

from keras.models import Sequential #导入神经网络初始化函数
from keras.layers.core import Dense, Activation #导入神经网络层函数、激活函数

netfile = '../tmp/net.model' #构建的神经网络模型存储路径

net = Sequential()#建立神经网络
net.add(Dense(input_dim = 3, units = 10)) #添加输入层(3节点)到隐藏层(10节点)的连接
net.add(Activation('relu')) #隐藏层使用relu激活函数
net.add(Dense(input_dim = 10, units = 1)) #添加隐藏层(10节点)到输出层(1节点)的连接
net.add(Activation('sigmoid')) #输出层使用sigmoid激活函数
net.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics=['accuracy']) #编译模型,使用adam方法求解

net.fit(train[:, :3], train[:, 3], epochs=1000, batch_size=1) #训练模型,循环1000
net.save_weights(netfile)#保存模型

from sklearn.metrics import confusion_matrix #导入混淆矩阵函数

predict_result =net.predict_classes(train[:, :3]).reshape(len(train)) #预测结果变形
'''这里要提醒的是,keras用predict给出预测概率,predict_classes才是给出预测类别,而且两者的预测结果都是n x 1维数组,而不是通常的 1 x n'''

cm =confusion_matrix(train[:, 3], predict_result) #混淆矩阵

import matplotlib.pyplot as plt #导入作图库
plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图,配色风格使用cm.Greens
plt.colorbar() #颜色标签

for x in range(len(cm)): #数据标签
for y in range(len(cm)):
    plt.annotate(cm[x, y],
xy=(x, y), horizontalalignment='center', verticalalignment='center')

plt.ylabel(
'Truelabel') #坐标轴标签
plt.xlabel('Predicted label') #坐标轴标签
plt.show() #显示作图结果

from sklearn.metrics import roc_curve #导入ROC曲线函数

predict_result =net.predict(test[:, :3]).reshape(len(test))
fpr, tpr, thresholds = roc_curve(test[:,
3], predict_result, pos_label=1)
plt.plot(fpr, tpr,
linewidth=2, label = 'ROC of LM') #作出ROC曲线
plt.xlabel('False Positive Rate') #坐标轴标签
plt.ylabel('True Positive Rate') #坐标轴标签
plt.ylim(0, 1.05) #边界范围
plt.xlim(0, 1.05) #边界范围
plt.legend(loc=4) #图例
plt.show() #显示作图结果

 

lm_model.py代码执行结果如下:

程序执行过程较长:

混淆矩阵为:

ROC of LM 图如下:

(7):Python实现LM神经网络模型和CART决策树模型

代码和以上相似:

Mix-lm-dt_model.py完整代码如下

#-*-coding: utf-8 -*-
import os
import pandas as pd
from random import shuffle

datafile =
'../data/model.xls'
data =pd.read_excel(datafile)
data = data.as_matrix()
shuffle(data)

p =
0.8  #设置训练数据比例
train = data[:int(len(data)*p), :]
test = data[
int(len(data)*p):, :]

###构建神经网络分类模型
from keras.models import Sequential #导入神经网络初始化函数
from keras.layers.core import Dense, Activation #导入神经网络层函数、激活函数

netfile = '../tmp/net.model' #构建的神经网络模型存储路径

net = Sequential()#建立神经网络
net.add(Dense(input_dim = 3, units = 10)) #添加输入层(3节点)到隐藏层(10节点)的连接
net.add(Activation('relu')) #隐藏层使用relu激活函数
net.add(Dense(input_dim = 10, units = 1)) #添加隐藏层(10节点)到输出层(1节点)的连接
net.add(Activation('sigmoid')) #输出层使用sigmoid激活函数
net.compile(loss = 'binary_crossentropy', optimizer = 'adam', metrics=['accuracy']) #编译模型,使用adam方法求解

net.fit(train[:, :3], train[:, 3], epochs=10, batch_size=1) #训练模型,循环1000
net.save_weights(netfile)#保存模型

#
绘制混淆矩阵
from cm_plot import * #导入自行编写的混淆矩阵可视化函数
from sklearn.tree import DecisionTreeClassifier #导入决策树模型
from sklearn.metrics import confusion_matrix #导入混淆矩阵函数

predict_result = net.predict_classes(train[:,:3]).reshape(len(train)) #预测结果变形
cm =confusion_matrix(train[:, 3], predict_result) #混淆矩阵
import matplotlib.pyplot as plt #导入作图库
plt.matshow(cm, cmap=plt.cm.Greens) #画混淆矩阵图,配色风格使用cm.Greens
plt.colorbar() #颜色标签

for x in range(len(cm)): #数据标签
for y in range(len(cm)):
    plt.annotate(cm[x, y],
xy=(x, y), horizontalalignment='center', verticalalignment='center')

plt.ylabel(
'Truelabel') #坐标轴标签
plt.xlabel('Predicted label') #坐标轴标签
plt.show() #显示作图结果

treefile = '../tmp/tree.pkl' #模型输出名字
tree =DecisionTreeClassifier() #建立决策树模型
tree.fit(train[:,:3],train[:, 3]) #训练
#
保存模型
from sklearn.externals import joblib
joblib.dump(tree, treefile)

from sklearn.metrics import roc_curve #导入ROC曲线函数
import matplotlib.pyplot as plt
fpr1, tpr1, thresholds1 = roc_curve(test[:,
3], net.predict(test[:, :3]).reshape(len(test)), pos_label=1)
fpr2, tpr2, thresholds2 = roc_curve(test[:,
3], tree.predict_proba(test[:, :3])[:, 1], pos_label=1)
plt.plot(fpr1, tpr1,
linewidth=2, label = 'ROC of LM', color = 'blue') #作出ROC曲线
plt.plot(fpr2,tpr2, linewidth=2, label = 'ROC of CART', color = 'green')
plt.xlabel(
'FalsePositive Rate') #坐标轴标签
plt.ylabel('True Positive Rate') #坐标轴标签
plt.ylim(0, 1.05) #边界范围
plt.xlim(0, 1.05) #边界范围
plt.legend(loc=4) #图例
plt.show() #显示作图结果

 

Mix-lm-dt_model.py代码执行结果如下:

混淆矩阵如下:

LM神经网络模型和CART决策树模型的混合模型图如下:

完整包结构如下:

 


  • 11
    点赞
  • 81
    收藏
    觉得还不错? 一键收藏
  • 51
    评论
Python数据挖掘是一种从大型数据库中分析和发现预测信息的过程。它涉及使用Python编程语言和数据挖掘技术来处理和分析数据数据挖掘可以帮助我们从数据中提取有用的模式、趋势和关联,以便做出预测和决策。 学习使用Python进行数据挖掘可能会面临一些困难,特别是在早期阶段。您可能会遇到许多错误消息和挑战,但是通过坚持不懈地练习和应用到自己的数据集上,您可以逐渐掌握数据挖掘的技巧和方法。使用Python数据挖掘工具和库,如Pandas,可以帮助您处理和分析数据,提供了一个简单的平台来组织、排序和操作数据。 要进行数据挖掘,您需要具备一定的统计学基础和编程知识。掌握Python编程语言和相关的数据挖掘技术,可以帮助您有效地处理大规模的数据,并从中提取有用的信息。 引用\[1\]和\[2\]提供了关于数据挖掘的一些背景和挑战,而引用\[3\]介绍了使用Python的Pandas模块来清理和重构数据的方法。这些资源可以帮助您更好地理解和应用Python数据挖掘技术。 #### 引用[.reference_title] - *1* *2* *3* [Python数据挖掘指南](https://blog.csdn.net/dmg17866/article/details/101377781)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v4^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 51
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值