股票投资中的概率论——随机变量与概率分布

本文介绍了股票收益率的概念及其在概率论中的分布特征,通过MATLAB展示了如何绘制股票收益率的直方图和密度图,以分析收益率的频率分布、偏度和峰度等统计量,帮助投资者理解股票投资的风险和收益。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、随机变量与概率分布

1.1 股票收益率的频率分布特征

1.1.1股票收益率概述

股票收益率是指投资者持有股票一段时间后获得的收益情况。通常情况下,股票收益率可以分为两种类型:股息收益和价格收益。
股息收益是指持有股票期间所获得的股息收入。这些收入通常以固定比例从公司利润中分配给股东。股息收益的计算方法是每股派息数(或年度股息总额)除以股票当前价格。
价格收益是指在持有股票期间,由于股票价格的波动而获得的收益。价格收益的计算方法是股票价格变动幅度与购买时价格的乘积,再加上股息收益。
股票收益率可以为投资者提供关于其股票投资表现的客观评估。通常情况下,越高的收益率意味着股票表现越好。然而,股票收益率也受很多其他因素的影响,如公司基本面、宏观经济环境等,需要综合考虑。

1.1.2股票收益率图示(直方图/密度图)

为了更好地理解股票收益率的分布特征,我们可以通过绘制直方图或密度图来展示其频率分布情况。
直方图是一种以矩形表示数据频数分布的统计图表。在绘制股票收益率直方图时,需要将股票收益率按照固定的区间进行划分,并在每个区间内标出相应的频数或频率。通过观察直方图,可以得到股票收益率的集中趋势和离散程度等信息。
密度图是一种连续概率分布函数模型,通常用于描述未知数据的分布情况。与直方图不同,密度图的横轴是连续变量,在绘制时需要先进行核密度估计,再通过曲线来表示概率密度的分布情况。通过观察密度图,可以更加准确地了解股票收益率的概率密度和分布情况。
无论是直方图还是密度图,都能够直观反映股票收益率的分布特征,帮助投资者更好地理解风险和收益的概率分布情况。

  1. 利用MATLAB绘制股票收益率直方图或密度图
    首先,为了演示如何利用MATLAB绘制股票收益率直方图或密度图,我们需要获取一组股票收益率数据。在此我们将使用Wind数据服务平台提供的免费股票数据进行演示并假设我们已经获取到了某只股票的收益率数据。
    我们可以通过Matlab代码创建并保存一个股票的收益率数据类似的数据集。
    下面是一份示例代码,用于生成500个服从正态分布的随机数作为股票每日收益率数据,并保存到csv文件中:
mu = 0.05;
sigma = 0.2;
n_days = 250;
returns = mu + sigma * randn(n_days, 500);
csvwrite('stock_returns.csv', re
在Python中,可以使用概率论中的随机变量分布来进行统计计算。常见的离散型分布包括二项分布和泊松分布,连续性分布包括正态分布、均匀分布和指数分布等。这些分布可以用来计算概率、期望和方差等统计量。 对于正态分布,可以使用scipy.stats库中的norm模块进行计算。例如,可以使用norm.cdf函数计算小于某个值的概率,使用norm.ppf函数计算给定累积概率时的反函数值。代码示例如下: ``` from scipy.stats import norm # 计算小于40的概率 p1 = norm.cdf(40, loc=50, scale=10) # 计算30到40之间的概率 p2 = norm.cdf(40, loc=50, scale=10) - norm.cdf(30, loc=50, scale=10) # 计算小于2.5的概率 p3 = norm.cdf(2.5, 0, 1) # 计算-1.5到2之间的概率 p4 = norm.cdf(2) - norm.cdf(-1.5) # 计算累计概率为0.025时的反函数值 q1 = norm.ppf(0.025, loc=0, scale=1) # 计算累计概率为0.975时的反函数值 q2 = norm.ppf(0.975, 0, 1) print(p1, p2, p3, p4, q1, q2) ``` 对于计算随机变量概率分布的均值和方差,可以使用numpy库进行计算。代码示例如下: ``` import numpy as np # 假设有一个数据框df,其中包含了不合格品数和概率 mymean = sum(df['不合格品数'] * df['概率']) # 计算均值 myvar = sum((df['不合格品数'] - mymean) ** 2 * df['概率']) # 计算方差 mystd = np.sqrt(myvar) # 计算标准差 print(mymean, myvar, mystd) ``` 以上是关于Python统计学中随机变量概率分布的一些基本操作和计算方法。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [Python统计学03——随机变量概率分布](https://blog.csdn.net/weixin_46277779/article/details/126673517)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值