一、随机变量与概率分布
1.1 股票收益率的频率分布特征
1.1.1股票收益率概述
股票收益率是指投资者持有股票一段时间后获得的收益情况。通常情况下,股票收益率可以分为两种类型:股息收益和价格收益。
股息收益是指持有股票期间所获得的股息收入。这些收入通常以固定比例从公司利润中分配给股东。股息收益的计算方法是每股派息数(或年度股息总额)除以股票当前价格。
价格收益是指在持有股票期间,由于股票价格的波动而获得的收益。价格收益的计算方法是股票价格变动幅度与购买时价格的乘积,再加上股息收益。
股票收益率可以为投资者提供关于其股票投资表现的客观评估。通常情况下,越高的收益率意味着股票表现越好。然而,股票收益率也受很多其他因素的影响,如公司基本面、宏观经济环境等,需要综合考虑。
1.1.2股票收益率图示(直方图/密度图)
为了更好地理解股票收益率的分布特征,我们可以通过绘制直方图或密度图来展示其频率分布情况。
直方图是一种以矩形表示数据频数分布的统计图表。在绘制股票收益率直方图时,需要将股票收益率按照固定的区间进行划分,并在每个区间内标出相应的频数或频率。通过观察直方图,可以得到股票收益率的集中趋势和离散程度等信息。
密度图是一种连续概率分布函数模型,通常用于描述未知数据的分布情况。与直方图不同,密度图的横轴是连续变量,在绘制时需要先进行核密度估计,再通过曲线来表示概率密度的分布情况。通过观察密度图,可以更加准确地了解股票收益率的概率密度和分布情况。
无论是直方图还是密度图,都能够直观反映股票收益率的分布特征,帮助投资者更好地理解风险和收益的概率分布情况。
- 利用MATLAB绘制股票收益率直方图或密度图
首先,为了演示如何利用MATLAB绘制股票收益率直方图或密度图,我们需要获取一组股票收益率数据。在此我们将使用Wind数据服务平台提供的免费股票数据进行演示并假设我们已经获取到了某只股票的收益率数据。
我们可以通过Matlab代码创建并保存一个股票的收益率数据类似的数据集。
下面是一份示例代码,用于生成500个服从正态分布的随机数作为股票每日收益率数据,并保存到csv文件中:
mu = 0.05;
sigma = 0.2;
n_days = 250;
returns = mu + sigma * randn(n_days, 500);
csvwrite('stock_returns.csv', re