题目:3348:线段相交Ⅲ (tzcoder.cn)
描述:
线段相交有两种情形:一种是“规范相交”,另一种是“非规范相交”。规范相交是指两条线段恰有唯一一个不是端点的公共点。即如果一条线段的端点在另一条线段上则不视为相交。如果两条线段有部分重合,也不视为相交。而非规范相交则把以上两种情况都视为相交。如下图所示:
规范相交认为a,b两种情况都是不相交的,而非规范相交认为a,b两种情况都是相交的。
本题要求判断两条线段是否相交。如果是规范相交则输出YES,并输出交点坐标,如果是非规范相交则只需输出YES,如果不相交则输出NO。
输入
输入有多组数据,T表示输入数据的组数。每组测试数据有两行第一行输入一条线段的两个端点的坐标,第二行输入另一个线段的两个端点的坐标。
输出
对于每组测试数据,输出一行。如果是规范相交则输出YES,并输出交点坐标(小数点后面保留3位),如果是非规范相交则只需输出YES,如果不相交则输出NO。
样例输入:
4
0 0 1 1
0 1 1 0
0 0 2 2
2 2 3 3
0 0 2 2
1.5 1.5 3 3
0 0 1 1
2 2 3 3
样例输出:
YES (0.500,0.500)
YES
YES
NO
思路:
线段相交,可以用快速排斥。
两条直线,分别以点a与点c为顶点。
以qa,qb,qc,qd来确定两两直线的关系(bc与cd,ac与cd,ab与ad,ab与ac)
如果 qa与qb(或者qc与qd)乘积大于0,代表关于c(或关于a)两条线的叉积呈散开状,也就没有交点;
如果等于0 则有一点在线上,如果小于0,则相交。
最后用定比分点公式求出分点。
代码:
#include<bits/stdc++.h>
using namespace std;
struct xx
{
double x;
double y;
};
double chaji(xx a,xx b,xx c)
{
return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
int suan(xx a,xx b,xx c,xx d)
{
if(max(a.x,b.x)<min(c.x,d.x))
{
return 1;
}
if(min(a.x,b.x)>max(c.x,d.x))
{
return 1;
}
if(max(a.y,b.y)<min(c.y,d.y))
{
return 1;
}
if(min(a.y,b.y)>max(c.y,d.y))
{
return 1;
}
return 0;
}
int main()
{
int t;
cin>>t;
while(t--)
{
xx a,b,c,d;
cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y>>d.x>>d.y;
if(suan(a,b,c,d)==1)
{
cout<<"NO"<<endl;
}
else
{
double qa=chaji(c,d,b);
double qb=chaji(c,d,a);
double qc=chaji(a,b,d);
double qd=chaji(a,b,c);
if(qd*qc>0||qb*qa>0)
{
cout<<"NO"<<endl;
}
else if(qd*qc==0||qb*qa==0)
{
cout<<"YES"<<endl;
}
else
{
double s1=fabs(qd)/fabs(qc);
printf("YES (%.3f,%.3f)\n",(c.x+s1*d.x)/(1+s1),(c.y+s1*d.y)/(1+s1));
}
}
}
}
参考:TZOJ 3348 线段相交Ⅲ_壇香梅的博客-CSDN博客
更加详细。