线段相交Ⅲ

题目:3348:线段相交Ⅲ (tzcoder.cn)

描述:

线段相交有两种情形:一种是“规范相交”,另一种是“非规范相交”。规范相交是指两条线段恰有唯一一个不是端点的公共点。即如果一条线段的端点在另一条线段上则不视为相交。如果两条线段有部分重合,也不视为相交。而非规范相交则把以上两种情况都视为相交。如下图所示:

规范相交认为a,b两种情况都是不相交的,而非规范相交认为a,b两种情况都是相交的。

本题要求判断两条线段是否相交。如果是规范相交则输出YES,并输出交点坐标,如果是非规范相交则只需输出YES,如果不相交则输出NO。

输入

输入有多组数据,T表示输入数据的组数。每组测试数据有两行第一行输入一条线段的两个端点的坐标,第二行输入另一个线段的两个端点的坐标。

输出

对于每组测试数据,输出一行。如果是规范相交则输出YES,并输出交点坐标(小数点后面保留3位),如果是非规范相交则只需输出YES,如果不相交则输出NO。

样例输入:

4
0 0 1 1
0 1 1 0
0 0 2 2
2 2 3 3
0 0 2 2
1.5 1.5 3 3
0 0 1 1
2 2 3 3

样例输出:

YES (0.500,0.500)
YES
YES
NO

思路:

线段相交,可以用快速排斥。

两条直线,分别以点a与点c为顶点。

以qa,qb,qc,qd来确定两两直线的关系(bc与cd,ac与cd,ab与ad,ab与ac)

如果 qa与qb(或者qc与qd)乘积大于0,代表关于c(或关于a)两条线的叉积呈散开状,也就没有交点;

如果等于0 则有一点在线上,如果小于0,则相交。

最后用定比分点公式求出分点。

代码:

#include<bits/stdc++.h>
using namespace std;
struct xx
{
    double x;
	double y;
};
double chaji(xx a,xx b,xx c)
{
	return (b.x-a.x)*(c.y-a.y)-(b.y-a.y)*(c.x-a.x);
}
int suan(xx a,xx b,xx c,xx d)
{
	if(max(a.x,b.x)<min(c.x,d.x))
	{
		return 1;
	}
	if(min(a.x,b.x)>max(c.x,d.x))
	{
		return 1;
	}
	if(max(a.y,b.y)<min(c.y,d.y))
	{
		return 1;
	}
	if(min(a.y,b.y)>max(c.y,d.y))
	{
		return 1;
	}
	return 0;
}
int main()
{

    int t;
	cin>>t;
	while(t--)
	{
		xx a,b,c,d;
		cin>>a.x>>a.y>>b.x>>b.y>>c.x>>c.y>>d.x>>d.y;
		if(suan(a,b,c,d)==1)
		{
			cout<<"NO"<<endl;
		}
		else
		{
			double qa=chaji(c,d,b);
			double qb=chaji(c,d,a);
			double qc=chaji(a,b,d);
			double qd=chaji(a,b,c);
			if(qd*qc>0||qb*qa>0)
			{
				cout<<"NO"<<endl; 
			}
			else if(qd*qc==0||qb*qa==0)
			{
				cout<<"YES"<<endl;
			}
			else
			{
				double s1=fabs(qd)/fabs(qc);
				printf("YES (%.3f,%.3f)\n",(c.x+s1*d.x)/(1+s1),(c.y+s1*d.y)/(1+s1));
			}
		}
	}
}

参考:TZOJ 3348 线段相交Ⅲ_壇香梅的博客-CSDN博客

更加详细。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值