让微积分穿梭于工作与学习之间(5):我自认为牛逼的成果之一:直接利用定义计算1/x的定积分

教材给出的算定积分的通用方案是通过牛顿——莱布尼茨公式来进行求解。

但在此前,课本也给出了一个直接运用定义来计算的例子,就是二次函数x^2,并且让大家见识到,利用定义,对函数进行分割,近似求和,取极限是件多么蛋疼的事情。

然而,喜欢钻牛角尖的我却偏偏喜欢这么玩,还觉得有意思。高三选修教材举了个例子说,用定义计算1/x的定积分是几乎不可能的事情,这从1/x的原函数可见一斑。1/x是幂函数,但是其原函数竟然是与之几乎没有关系的ln|x|,所以大多数人都会认为,不管怎么分割都无法通过初等函数的方式对分割出来的数列进行近似求和并得到Sn的通项公式,然后求得极限。

初等数学中能求出Sn通项公式的基本数列有等差数列和等比数列。在此基础上,可以发展出一些变体,比如x^2那个就属于高阶等差数列,类似地,x^3及更高次数在一定范围内都可以基于x^2的求和技巧算出。

但是如果次数往下走,把它放到分母上,就不是那么轻松了。虽然高中也有把未知数放分母的题目,但那些多半是二次,可以通过因式分解拆成两项,并且相邻项之间可以刚好抵消,从而使得Sn非常简洁。

这些似乎都没有太大的参考价值,所以我自己做了一些分析,得出的结论是,等比数列比等差数列要容易凑一些,因为定积分的分割项是要x和f(x)值相乘构成的,在复杂的函数环境下,想要让相乘后的结果具备等差数列的性质会顾此失彼。

而等比本身是乘法体系的内容,所以凑起来似乎容易一些。

下面我直接举出例子。

这玩意儿用牛顿-莱布尼茨公式很简单,因为lnx是1/x在区间[1,2]上的一个原函数,所以可以直接得出结果。

有这么简单的计算方法,我去研究定义法,是没事找茬。但这却是我的兴趣,相信在这里也能找到志同道合的朋友。

前面说了我用的是等比数列,其特点在于变量在指数上而非在底数上,所以需要做一下换元(注意这跟换元积分法没有任何关系)。

,则有

然后按u来等分,就可以得到等比数列了。

这个只是函数值,它还要跟x相乘,为了让大家看得更直观,我做了一个图。

图中橙色部分的面积就等于

然后我们按上述的指数等分方法进行分割,不难发现,跟直接按x来等分,效果是不一样的。但是我们一样可以先来一个近似求和。

以蓝色块为例,它的面积等于

其它的几块也类似,所以分割成4份,结果就是。

指数取负数是将1/x用x的-1次方表示

把指数写成分数,并且分母全部通分为4(切割份数),得到。

用i表示循环变量,用n表示切割份数4,那么第i项的通项公式就可以很轻易地写出来了。

这个项看着还不确定是不是等比数列的一般项,我们化简一下看。

注意这里的变量是i,n为常量,所以,卧槽,这个一般项竟然还是个常数。每一块的面积都只跟分割的份数有关,而跟具体哪一块没有半毛钱关系。也就是说,上图的4块矩形面积相等。

既然每一块的面积都是常数,那求和就很容易了,直接乘以份数即可。

n每取一个值,都可以算出所求积分的一个近似结果。比如n=4就是上图4个矩形的面积之和。显然,当n趋于无穷大的时候,得到的正是橙色部分的准确面积,也就是所求积分的值了,具体演算过程如下:

这个极限对于高中生来说略有难度,但对于大学生而言则轻而易举。换元一下将其化成0/0的形式,再用洛必达法则即可马上算出来。

就这样,我成功抛开了牛顿-莱布尼茨公式,直接运用定义把1/x的定积分给计算出来,可谓独辟蹊径,剑走偏锋的做法。此法可以有效培养学生的发散思维能力,也可以帮助同学们掌握跟多的套路。虽然后面我发现有论文也用了类似的方法,但比较难搜得出来,故仍然鲜为人知。

然而,不可否认的是,定义法求定积分在实际开发中真的一点卵用都没有。明明直接用原函数就能轻松解决的事情,你还绕这么大一个圈子干啥呢?当然对我来说,绕圈子不重要,更重要的是我因此而证明了自己有牛逼的一面,得到了精神上的满足。

下一篇,我将指出某教材上一道例题的错误,虽说真的不严谨,但实际中那个细节问题也真没必要去纠结。跟本文一样,我相信还是有人会感兴趣滴,嘿嘿!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值