让微积分穿梭于工作与学习之间(8):我自认为牛逼的成果之四:直接用定义求反正弦函数的导数

大部分教材已经明确指出,用定义法计算稍复杂的函数的导数一般都很困难。前面给出的正切函数,由于它有和差展开式,所以虽然展开后繁琐了点,但仍然可以继续化简得到最终结果,而反三角函数则不一样了。arcsin(x+△x)就是一个无法用arcsinx,arcsinΔx或者诸如arccosx这样的函数去表达的式子,因此导数中的arcsin(x+△x)-arcsinx部分就无法运算下去了。

但喜欢钻牛角尖的我肯定不死心,两角和差三角函数,它们通过在坐标系上用单位圆的方法成功展开了,那反三角函数我相信也是能的。

实践证明,我确实可以给展开出来,只是过程略繁琐。

首先按照定义给出反三角函数导数的式子。

如下图,假设红色线AB的长度为x,那么红色弧线所指示的角AOB的弧度值就是arcsinx。

有了这样的一个单位圆做辅助,我们就可以在图上构建出上式中的其它变量了。

反正弦函数值的变化意味着角度的变更,所以我让OB旋转到OB'以标出加入Δx后的变量。其中,A'B'=x+Δx,∠A'O'B'=arcsin(x+Δx)。

然后,导数式子的分子部分arcsin(x+Δx)-arcsinx自然就等于∠A'O'B'-∠AO'B=∠BO'B'

下面,我们把焦点放在BOB'这个三角形上,看看∠BO'B'怎么算。

直接拿arcsinXXX表示上图中的角度太蛋疼,可读性很差,而且哪怕改用θ表示,3个角放一起也不太清晰了。所以我用不同颜色表示不同的角,同种颜色的弧线对应同种颜色的文字所示的角度值。然后为了方便大家对照,我把角度值跟三角函数的关系直接附带到图片的下方。

导数式子上的分子等于Δθ。O,B,B'三点坐标都已知,所以可用余弦定理,向量点积或者两角和差的方法求出Δθ。

然而我们要求的是反正弦函数,所以最后一种方法处理起来更方便。因为正弦和反正弦容易抵消。

在这里,已知的是和θ+Δθ,要求的是Δθ,因此可以这样来。

sinΔθ=sin(θ+Δθ-θ)

然后,正弦的部分可以先直接用根据上图中的式子来进行化简。由

得到

然后就是

余弦部分,可利用三角函数恒等式

化为正弦。

那么这里该取正的那个还是负的那个呢?我们知道,反正弦函数的定义区间是-90度到90度,在这范围内,x坐标大于等于0,所以x/r始终不是负数,所以应该取正数。

就这样,三角函数和反三角函数都被完全化走了,然而分子部分,它是等于Δθ,所以又得重新套回一个反三角?其实不然。因为极限上有个经典的极限,它基于夹逼定理所得。

利用这个极限,我们可以在Δθ和sinΔθ之间来回切换了。

下面,我们把Δθ=arcsin(x+Δx)-arcsinx代入到导数定义所给出的式子中,并用上面的极限进行化简。

接着展开

后面一块比较简单,关键是前面的。高中常用的套路是用平方差公式把分子的根号去掉。

几经波折,总算把反正弦的导数给求出来了,然而这一点卵用都没有。首先,如果仅为追求结果,反函数的导数公式可以很容易给算出来。其次,哪怕是享受过程,钻研理论,也没有什么实质性意义。在这个过程中,除了繁琐的几何变换和代数化简,没有任何创新的思路或者成果在里面。

一口气写了4篇所谓的“成果”展示,大家会发现,其实都不外乎是用最原始的方法对一些成熟的基础公式进行推导或者证明,牛角尖倒是钻到位了,实际问题一个都没解决。有句话是这么说的,“把简单的事情做复杂很容易,把复杂的事情做简单很困难”。我恰好就是前者,所以真没什么了不起,然而这却成了我当年自负和装逼的资本。直到真正遇到问题的时候,才真正发现自己菜得一逼。

至此,牛逼成果展示告一段落,下篇开始,我会陆续讲出自己碰到的各种无法解决的问题,同时讲讲自己的体会和心得。

 

 

 

  • 4
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值