不知道为什么min写成#define min(x,y) ((x)<(y)?(x):(y))用G++交就一直WA,用C++交就过了。
最后还是写成函数的形式好了。
因为顶点可以重复通过要先做Floyd处理一遍。
#include <iostream>
#include <cstring>
#include <cstdio>
#define INF 0xffffff
using namespace std;
int dis[11][11];
int dp[1<<11][11];
int n;
int min(int x,int y)
{
return x<y?x:y;
}
void floyd()
{
int i,j,k;
for (k=0;k<=n;k++)
for (i=0;i<=n;i++)
for (j=0;j<=n;j++)
if (dis[i][k]+dis[k][j]<dis[i][j])
dis[i][j]=dis[i][k]+dis[k][j];
}
int main()
{
int i,j;
while (1)
{
scanf("%d",&n);
if (!n) break;
for (i=0;i<=n;i++)
for (j=0;j<=n;j++)
scanf("%d",&dis[i][j]);
floyd();
int state;
for (state=1;state<1<<n;state++)
for (i=1;i<=n;i++)
{
dp[state][i]=INF;
if (state&(1<<(i-1)))
{
if ( state == 1<<(i-1))
dp[state][i]=dis[0][i];
else
{
for (j=1;j<=n;j++)
if (i!=j && (state&(1<<(j-1))))
dp[state][i]=min(dp[state^(1<<(i-1))][j]+dis[j][i],dp[state][i]);
}
}
}
int ans=INF;
for (i=1;i<=n;i++)
ans=min(dp[state-1][i]+dis[i][0],ans);
printf("%d\n",ans);
}
}
为什么不用维护dp[state][0]呢?
因为dp[state][0]表示从0开始经过state中的那些点又回到0,dp[state][i](1<=i<=n)的更新不会用到dp[state^(1<<(i-1))][0],如果可以通过0更新,则说明可以通过路径x->0->i更新(x是state^(1<<(i-1))中的某个点),而实际上我们已经用floyd处理过了,dis[x][i]实际上已经被优化为x->0->i的更短的路径了,所以dp[state][i]的更新利用dp[state^(1<<(i-1))][x]来更新即可,不必是dp[state^(1<<(i-1))][0]。
若维护dp[state][0]可以这么写,也是没问题的。
#include <iostream>
#include <cstring>
#include <cstdio>
#define INF 0xffffff
using namespace std;
int dis[11][11];
int dp[1 << 11][11];
int n;
int min(int x, int y)
{
return x < y ? x : y;
}
void floyd()
{
int i, j, k;
for (k = 0; k <= n; k++)
for (i = 0; i <= n; i++)
for (j = 0; j <= n; j++)
if (dis[i][k] + dis[k][j] < dis[i][j])
dis[i][j] = dis[i][k] + dis[k][j];
}
int main()
{
int i, j;
while (1)
{
scanf("%d", &n);
if (!n)
break;
for (i = 0; i <= n; i++)
for (j = 0; j <= n; j++)
scanf("%d", &dis[i][j]);
floyd();
int state;
for (state = 1; state < 1 << n; state++)
{
for (i = 1; i <= n; i++)
{
dp[state][i] = INF;
if (state & (1 << (i - 1)))
{
if (state == 1 << (i - 1))
dp[state][i] = dis[0][i];
else
{
dp[state][i] = min(dp[state ^ (1 << (i - 1))][0] + dis[0][i], dp[state][i]);
for (j = 1; j <= n; j++)
if (i != j && (state & (1 << (j - 1))))
dp[state][i] = min(dp[state ^ (1 << (i - 1))][j] + dis[j][i], dp[state][i]);
}
}
}
dp[state][0] = INF;
for (i = 1; i <= n; i++)
if (state & (1 << (i - 1)))
dp[state][0] = min(dp[state][0], dp[state][i] + dis[i][0]);
}
printf("%d\n", dp[state - 1][0]);
}
}