2024考研数学二考试大纲,javaspring面试题

考试要求

1.理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.

2.了解函数的有界性、单调性、周期性和奇偶性.

3.理解复合函数及分段函数的概念、了解反函数及隐函数的概念、掌握基本初等函数的性质及其图形、了解初等函数的概念、理解极限的概念、理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.

4.掌握极限的性质及四则运算法则.

5.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.

6.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.

7.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.

8.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.

二、一元函数微分学

导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理洛必达法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘、函数的最大值与最小值、弧微分、曲率的概念、曲率圆与曲率半径.

考试要求

1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.

2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.

3.了解高阶导数的概念,会求简单函数的高阶导数.

4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.

5.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理,了解并会用柯西中值定理.

6.掌握用洛必达法则求未定式极限的方法.

7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.

8.会用导数判断函数图形的凹凸性(注:在区间(a.b)内,设函数(x)具有二阶导数当f"(x)>0 时,f(x)的图形是凹的;当f"(X)<0时,f(X)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.

9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.

三、一元函数积分学

原函数和不定积分的概念、不定积分的基本性质、基本积分公:式、定积分的概念和基本性质、定积分中值定理、积分上限的函数及其导数、牛顿-菜布尼茨(Newton-Leibniz)公式、不定积分和定积分的换元积分法与分部积分法、有理函数、三角函数的有理式和简单无理函数的积分、反常(广义)积分、定积分的应用.

考试要求

1.理解原函数的概念,理解不定积分和定积分的概念.

2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.

3.会求有理函数、三角函数有理式和简单无理函数的积分.

4.理解积分上限的函数,会求它的导数,掌握牛顿一菜布尼茨公式.

5.了解反常积分的概念,会计算反常积分.

6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.

四、多元函数微积分学

多元函数的概念、二元函数的几何意义、二元函数的极限与连续的概念、有界闭区域.上二元连续函数的性质、多元函数的偏导数和全微分、多元复合函数、隐函数的求导法、二阶偏导数、多元函数的极值和条件极值、最大值和最小值、二重积分的概念、基本性质和计算.

考试要求

1.了解多元函数的概念,了解二元函数的几何意义.

2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.

3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.

4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小.值,并会解决一些简单的应用问题.

5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).

五、常微分方程

常微分方程的基本概念、变量可分离的微分、齐次微分方程、一阶线性微分方程、可降阶的高阶微分方程、线性微分方程解的性质及解的结构定理、二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程、简单的二阶常系数非齐次线性微分方程、微分方程的简单应用.

考试要求

1.了解微分方程及其阶、解、通解、初始条件和特解等概念.

2.掌握变量可分离的微分方程及一-阶线性微分方程的解法,会解齐次微分方程.

3.会用降阶法解下列形式的微分方程: y"=f(x)、y"= f(x,y’)和y"=f(y,y’).

4.理解二阶线性微分方程解的性质及解的结构定理.

5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.

6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.

7.会用微分方程解决一些简单的应用问题.

线性代数

一、行列式

行列式的概念和基本性质、行列式按行(列)展开定理.

考试要求

1.了解行列式的概念,掌握行列式的性质.

2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

二、矩阵

矩阵的概念、矩阵的线性运算、矩阵的乘法、方阵的幂、方阵乘积的行列式、矩阵的转置、逆矩阵的概念和性质、矩阵可逆的充分必.要条件、伴随矩阵、矩阵的初等变换、初等矩阵、矩阵的秩、矩阵的等价、分块矩阵及其运算.

考试要求

1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.

2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.

5.了解分块矩阵及其运算.

三、向量

向量的概念、向量的线性组合和线性表示、向量组的线性相关与线性无关、向量组的极大线性无关组、等价向量组、向量组的秩、向.量组的秩与矩阵的秩之间的关系、向量的内积、线性无关向量组的的正交规范化方法.

考试要求

1.理解n维向量、向量的线性组合与线性表示的概念.

2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
img
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新

如果你觉得这些内容对你有帮助,可以添加V获取:vip1024b (备注Java)
img

总结

本文从基础到高级再到实战,由浅入深,把MySQL讲的清清楚楚,明明白白,这应该是我目前为止看到过最好的有关MySQL的学习笔记了,我相信如果你把这份笔记认真看完后,无论是工作中碰到的问题还是被面试官问到的问题都能迎刃而解!

MySQL50道高频面试题整理:

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
img

712677723020)]

一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
[外链图片转存中…(img-bdAu6Nuk-1712677723020)]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值