图像分割
文章平均质量分 80
计算机视觉中的语义分割算法
曾小蛙
这个作者很懒,什么都没留下…
展开
-
【图像分割】SAM:Segment Anything论文学习V1
一个重量级的()图像编码器输出一个图像的特征编码,可以通过各种输入提示(a variety of inputprompts)高效地查询,以实现分割目标掩码,并以摊销的实时速度进行处理。对于与多个对象对应的模糊提示,SAM可以输出多个有效的掩码,并附带置信度得分。备注(·图像嵌入 image embedding是指将图像转换为固定长度高纬向量表示的过程。它是通过将图像输入到深度神经网络中的图像编码器(imageencoder)来实现的。原创 2023-05-30 12:33:42 · 1671 阅读 · 0 评论 -
【论文简介】CollageGAN: Collaging Class-specific GANs for Semantic Image Synthesis(用于语义图像合成的特定类拼贴GANs)
用于语义图像合成的拼贴特定类GANs(未开源)图1:语义条件下高分辨率的图像生成(左上角黄色插图)。我们的基本模型(第1列)比spade(第4-5列)产生更现实的结果。我们通过使用特定于类的生成器来生成前景对象或部件,并将它们组合在(compose them on)由基本模型生成的图像上(已基本结果作为输入,到特定类别GAN),从而进一步提高了结果的质量。第二列的分割图(蓝色插图)显示了被我们的gan库修改的部分,放大的结果显示在每个图像旁边项目主页:https://yuheng-li.github原创 2022-04-22 16:16:27 · 3773 阅读 · 0 评论 -
【语义分割】label2color2label_灰度标签彩色化、彩色标签灰度化
项目代码https://gitee.com/zengxy2020/csdn_label2color2label label来源 【deepfashoin】 +人体解析_self-correction-human-parsing、获得语义标签0.应用背景语义分割标签文件,一般为灰度,转换为彩色方便查看预训练模型在不同模型上推理结果。GANs的很多模型,数据集需要彩色的语义便签、或灰度的语义便签训练,二者之间的转换是比较重要的。(例如 pix2pix |pix2pixhd)1. la原创 2022-03-31 11:07:30 · 6827 阅读 · 3 评论 -
【人体解析】开箱即用的《self-correction-human-parsing》、获得语义标签
【人体解析】开箱即用的《self-correction-human-parsing》、获得语义标签Github | Paper | Google_colab demo (需要梯子)概述本文主要介绍 人体解析(human parse)预模型的推理使用,笔者调研了很多模型,大多配置复杂,只能对特定数据集使用,而Self-Correction-Human_Parsing 项目 能够开箱即用对单张图片进行推理使用,得到语义割图图稍微修改代码,可以同时获得RGB与灰原创 2021-12-30 10:46:38 · 3717 阅读 · 12 评论 -
【opencv】使用鼠标绘图、输出指定位置RGB/ 灰度像素值
主要参考【官方代码】 Mouse as a Paint-Brush 【官方文档】鼠标回调的事件(MouseEvent)、事件状态(MouseEventFlags)示例1:双击鼠标画圆EVENT_LBUTTONDBLCLK:双击(DBL)鼠标左键(L)出发opencv函数import numpy as npimport cv2 as cv# mouse callback functiondef draw_circle(event,x,y,flags,param): if原创 2021-11-29 20:10:25 · 4453 阅读 · 0 评论 -
【实例分割】基于PaddleDetection的MaskRCNN对自己数据集进行检测
简介最近项目需要用到实例分割,起初以为飞浆将模型放在PaddleSeg里,其实归类到目标检测的工具包**PaddleDetection**。本文主要流程:labelme标记的如何自己数据、以及配置PaddleDetection安装与测试labelme实例分割数据转化PaddleDetection训练所支持的coco格式修改配置文件开始训练第一步:labelme标记分割数据集官方源: https://github.com/wkentaro/labelme国内源下载与安装:https:/原创 2021-03-25 21:36:49 · 3803 阅读 · 0 评论 -
[语义分割]训练deeplabv3(一):建立自己的数据集
[deeplabv3+]:https://github.com/tensorflow/models/tree/master/research/deeplab[labelme]:https://github.com/wkentaro/labelme简介本博客主要介绍了,deeplabv3+训练前的自己数据集准备工作: 即将用labelme标记的自己的语义分割数据集转化为deeplabv3...原创 2020-04-29 21:46:18 · 1511 阅读 · 0 评论