【人体解析】开箱即用的《self-correction-human-parsing》、获得语义标签
- Github | Paper | Google_colab demo (需要梯子)
概述
- 本文主要介绍
人体解析(human parse)
预模型的推理使用, - 笔者调研了很多模型,大多配置复杂,只能对特定数据集使用,
- 而Self-Correction-Human_Parsing 项目 能够
开箱即用
- 而Self-Correction-Human_Parsing 项目 能够
- 对单张图片进行推理使用,得到
语义割图图
- 稍微修改代码,可以同时获得RGB与灰度语义分割图
- 灰度语义分割图 为训练用的label,8位单通道图像(灰度值为:0,1,2,3…n_class)。
论文中效果
- 第一行为输入,第二行为实际标签,第三行为
lip 20类
预训练模型推理结果
具体类别
-
body_parse=['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat', 'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm', 'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
本博客图文资料
-
提取码
slnp