【人体解析】开箱即用的《self-correction-human-parsing》、获得语义标签

【人体解析】开箱即用的《self-correction-human-parsing》、获得语义标签

概述

  • 本文主要介绍 人体解析(human parse)预模型的推理使用,
  • 笔者调研了很多模型,大多配置复杂,只能对特定数据集使用,
    • 而Self-Correction-Human_Parsing 项目 能够开箱即用
  • 对单张图片进行推理使用,得到语义割图图
    • 稍微修改代码,可以同时获得RGB与灰度语义分割图
    • 灰度语义分割图 为训练用的label,8位单通道图像(灰度值为:0,1,2,3…n_class)。

论文中效果

  • 第一行为输入,第二行为实际标签,第三行为lip 20类预训练模型推理结果
    • pretrain_infer-lip-visualization

具体类别

  • body_parse=['Background', 'Hat', 'Hair', 'Glove', 'Sunglasses', 'Upper-clothes', 'Dress', 'Coat',
                'Socks', 'Pants', 'Jumpsuits', 'Scarf', 'Skirt', 'Face', 'Left-arm',
                'Right-arm', 'Left-leg', 'Right-leg', 'Left-shoe', 'Right-shoe']
    

本博客图文资料

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾小蛙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值