[台大机器学习笔记整理]noise and error measure以及在此基础上Learning flow的扩展

在此前已经明确了superviesed learning的情况下的二分训练的原理。然而之前并没有考虑到噪声的影响,而在实际问题中是有噪声的。噪声有可能来自x方面,也可能来自y方面。存在噪声导致了可能实际有理想中的f(x)=y1,但我们收集到的数据集中会有f'(x)=y2。


依然以从bin中抽取球为例子,以下是有噪声时数据集中可能得到的结果




在hypothesis和x确定的时候,理想映射和h(x)的关系是确定的,而我们数据集中样本的y和h(x)是根据f(x)和noise强度得到的一个概率结果。


当我们使用的数据集从总体中抽取是独立同分布,且y对于任意x的概率也为独立同分布时,VC-bound依然成立(证明略),即如下:


对于有噪声的情况,我们可以结果y将其视为f(x)+noise


在这种情况下,我们将learning flow重新描绘如下:


在此前使用Ein和Eout的时候,直接使用的是否相等作为error函数。


在实际中常用的error函数有以下:


二元分类的结果可以根据正确/错误与系统判定positive/negative划分成true positive, false positive(即实际应该判断negative,但是误判),false negative(实际上应该判断为positive)和true negative。这个课程中使用指纹锁作为案例,将结果这样划分:



在考虑到不同的结果影响后果不同,有时候需要在计算error的时候给不同的错误赋予不同的权重,如下:

=

==============================================================================

P.S.拾遗

由于存在一些不平衡的样本集(即训练集中某种结果远远多于另一种结果),有时我们需要使用precison和recall作为error measure

其中

precision=true positive/all positive

recall=true positive/all true
其中all ture=ture positive + false negative

对于总体的错误情况,还可以使用F1 score

F1=2*(precison*recall)/(precison+recall)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值