机器学习
文章平均质量分 72
inabaraku
这个作者很懒,什么都没留下…
展开
-
[台大机器学习笔记整理]机器学习问题与算法的基本分类&由霍夫丁不等式论证机器学习的可行性
Lesson 3 这节课主要是关于总体情况的一个介绍。集中在机器学习可以处理怎样的问题上。在模型方面进行分类,主要是根据需要预测的结果进行分类1)首先从PLA算法可以知道机器学习可以进行二元分类。类似得,也可以进行多元分类,预测多个可能有多个结果的数据集的结果。即binary classification和multiclass classfication2)另外也可以做原创 2016-07-08 16:53:05 · 2693 阅读 · 0 评论 -
[台大机器学习笔记整理]作为结果的映射关系的泛化问题
L5在上节课中已经可以对有限个hypothesis的假设集列出霍夫丁不等式如下:在进行机器学习的过程中,我们一方面要保证Ein与Eout是比较接近的,另一方面为了获取一个比较好的结果,也希望Ein能比较好。于是有了以下的一个基本trade-off:当假设集大小M比较小的时候:能够很容易保证Ein与Eout比较接近,但是这个时候由于M比较小,不那么容易选取到一个E原创 2016-07-11 23:20:59 · 1467 阅读 · 0 评论 -
[台大机器学习笔记整理]perceptron learning algorithm
基本模型及感知器算法原创 2016-07-01 20:46:48 · 4794 阅读 · 0 评论 -
[台大机器学习笔记整理]vc-dimension
在上节课最终得到了vc-bound其中growth function有上限关系引入VC-dimension的概念,作为最大的non-breakpoint。以下写为dvc则显然在该处应该有最大的N令mH(N)=2^N。即Ndvc,mH(k)其中k为最小break point。当k存在时,显然右边是收敛的,因此有一个可用的假设原创 2016-07-15 13:36:04 · 1113 阅读 · 0 评论 -
[台大机器学习笔记整理]noise and error measure以及在此基础上Learning flow的扩展
在此前已经明确了superviesed learning的情况下的二分训练的原理。然而之前并没有考虑到噪声的影响,而在实际问题中是有噪声的。噪声有可能来自x方面,也可能来自y方面。存在噪声导致了可能实际有理想中的f(x)=y1,但我们收集到的数据集中会有f'(x)=y2。依然以从bin中抽取球为例子,以下是有噪声时数据集中可能得到的结果在hypothesis和x确定原创 2016-07-15 13:44:56 · 693 阅读 · 0 评论