【Andrew Ng深度学习作业】C1W4——Building your Deep Neural Network - Step by Step


参考


一、作业说明

本周作业分为两部分:第一部分与上周要求差不多,即是编写一个单隐藏层的神经网络;第二部分则要编写更多层的神经网络。数据集方面,沿用C1W2的猫图片数据集,也给了testCases.py供jupyter步步验证。
为了平滑引入深度神经网络,笔者在每一步都会分别列出两者的代码。但单隐藏层笔者不写注释,相信经过上周作业,单隐藏层理应熟悉,大家可以此快速理解深度神经网络(DNN)。

需要做的事:

  • 构建单层、多层神经网络;
  • 使用非线性激活函数,本次作业使用relu、sigmoid;
  • 计算交叉熵损失(损失函数);
  • 实现迭代向前和向后传播

二、准备工作


Python版本:3.72


1. 建立项目(略)

2. import

import numpy as np
import matplotlib.pyplot as plt
import dnn_utils
import lr_utils
import testCases

np.random.seed(1)
  • numpy:用Python进行科学计算的基本软件包
  • matplotlib:绘制图表库,可视化支持;
  • testCases:包含一些测试示例,可以此在Jupyter上测试主程序各部分正确性;
  • np.random.seed():随机初始化。使每次运行主程序时,随机数值均一样,可方便调试。

以上是本次作业主程序的依赖。可选作业会用到其它依赖,笔者到时会列出。


3. 查看lr_utils、testCases内容


lr_utils

import h5py
    
    
def load_dataset():
    train_dataset = h5py.File('datasets/train_catvnoncat.h5', "r")
    train_set_x_orig = np.array(train_dataset["train_set_x"][:]) # your train set features
    train_set_y_orig = np.array(train_dataset["train_set_y"][:]) # your train set labels

    test_dataset = h5py.File('datasets/test_catvnoncat.h5', "r")
    test_set_x_orig = np.array(test_dataset["test_set_x"][:]) # your test set features
    test_set_y_orig = np.array(test_dataset["test_set_y"][:]) # your test set labels

    classes = np.array(test_dataset["list_classes"][:]) # the list of classes
    
    train_set_y_orig = train_set_y_orig.reshape((1, train_set_y_orig.shape[0]))
    test_set_y_orig = test_set_y_orig.reshape((1, test_set_y_orig.shape[0]))
    
    return train_set_x_orig, train_set_y_orig, test_set_x_orig, test_set_y_orig, classes

testCases

import numpy as np

def linear_forward_test_case():
    np.random.seed(1)
    """
    X = np.array([[-1.02387576, 1.12397796],
 [-1.62328545, 0.64667545],
 [-1.74314104, -0.59664964]])
    W = np.array([[ 0.74505627, 1.97611078, -1.24412333]])
    b = np.array([[1]])
    """
    A = np.random.randn(3,2)
    W = np.random.randn(1,3)
    b = np.random.randn(1,1)
    
    return A, W, b

def linear_activation_forward_test_case():
    """
    X = np.array([[-1.02387576, 1.12397796],
 [-1.62328545, 0.64667545],
 [-1.74314104, -0.59664964]])
    W = np.array([[ 0.74505627, 1.97611078, -1.24412333]])
    b = 5
    """
    np.random.seed(2)
    A_prev = np.random.randn(3,2)
    W = np.random.randn(1,3)
    b = np.random.randn(1,1)
    return A_prev, W, b

def L_model_forward_test_case():
    """
    X = np.array([[-1.02387576, 1.12397796],
 [-1.62328545, 0.64667545],
 [-1.74314104, -0.59664964]])
    parameters = {'W1': np.array([[ 1.62434536, -0.61175641, -0.52817175],
        [-1.07296862,  0.86540763, -2.3015387 ]]),
 'W2': np.array([[ 1.74481176, -0.7612069 ]]),
 'b1': np.array([[ 0.],
        [ 0.]]),
 'b2': np.array([[ 0.]])}
    """
    np.random.seed(1)
    X = np.random.randn(4,2)
    W1 = np.random.randn(3,4)
    b1 = np.random.randn(3,1)
    W2 = np.random.randn(1,3)
    b2 = np.random.randn(1,1)
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    
    return X, parameters

def compute_cost_test_case():
    Y = np.asarray([[1, 1, 1]])
    aL = np.array([[.8,.9,0.4]])
    
    return Y, aL

def linear_backward_test_case():
    """
    z, linear_cache = (np.array([[-0.8019545 ,  3.85763489]]), (np.array([[-1.02387576,  1.12397796],
       [-1.62328545,  0.64667545],
       [-1.74314104, -0.59664964]]), np.array([[ 0.74505627,  1.97611078, -1.24412333]]), np.array([[1]]))
    """
    np.random.seed(1)
    dZ = np.random.randn(1,2)
    A = np.random.randn(3,2)
    W = np.random.randn(1,3)
    b = np.random.randn(1,1)
    linear_cache = (A, W, b)
    return dZ, linear_cache

def linear_activation_backward_test_case():
    """
    aL, linear_activation_cache = (np.array([[ 3.1980455 ,  7.85763489]]), ((np.array([[-1.02387576,  1.12397796], [-1.62328545,  0.64667545], [-1.74314104, -0.59664964]]), np.array([[ 0.74505627,  1.97611078, -1.24412333]]), 5), np.array([[ 3.1980455 ,  7.85763489]])))
    """
    np.random.seed(2)
    dA = np.random.randn(1,2)
    A = np.random.randn(3,2)
    W = np.random.randn(1,3)
    b = np.random.randn(1,1)
    Z = np.random.randn(1,2)
    linear_cache = (A, W, b)
    activation_cache = Z
    linear_activation_cache = (linear_cache, activation_cache)
    
    return dA, linear_activation_cache

def L_model_backward_test_case():
    """
    X = np.random.rand(3,2)
    Y = np.array([[1, 1]])
    parameters = {'W1': np.array([[ 1.78862847,  0.43650985,  0.09649747]]), 'b1': np.array([[ 0.]])}

    aL, caches = (np.array([[ 0.60298372,  0.87182628]]), [((np.array([[ 0.20445225,  0.87811744],
           [ 0.02738759,  0.67046751],
           [ 0.4173048 ,  0.55868983]]),
    np.array([[ 1.78862847,  0.43650985,  0.09649747]]),
    np.array([[ 0.]])),
   np.array([[ 0.41791293,  1.91720367]]))])
   """
    np.random.seed(3)
    AL = np.random.randn(1, 2)
    Y = np.array([[1, 0]])

    A1 = np.random.randn(4,2)
    W1 = np.random.randn(3,4)
    b1 = np.random.randn(3,1)
    Z1 = np.random.randn(3,2)
    linear_cache_activation_1 = ((A1, W1, b1), Z1)

    A2 = np.random.randn(3,2)
    W2 = np.random.randn(1,3)
    b2 = np.random.randn(1,1)
    Z2 = np.random.randn(1,2)
    linear_cache_activation_2 = ( (A2, W2, b2), Z2)

    caches = (linear_cache_activation_1, linear_cache_activation_2)

    return AL, Y, caches

def update_parameters_test_case():
    """
    parameters = {'W1': np.array([[ 1.78862847,  0.43650985,  0.09649747],
        [-1.8634927 , -0.2773882 , -0.35475898],
        [-0.08274148, -0.62700068, -0.04381817],
        [-0.47721803, -1.31386475,  0.88462238]]),
 'W2': np.array([[ 0.88131804,  1.70957306,  0.05003364, -0.40467741],
        [-0.54535995, -1.54647732,  0.98236743, -1.10106763],
        [-1.18504653, -0.2056499 ,  1.48614836,  0.23671627]]),
 'W3': np.array([[-1.02378514, -0.7129932 ,  0.62524497],
        [-0.16051336, -0.76883635, -0.23003072]]),
 'b1': np.array([[ 0.],
        [ 0.],
        [ 0.],
        [ 0.]]),
 'b2': np.array([[ 0.],
        [ 0.],
        [ 0.]]),
 'b3': np.array([[ 0.],
        [ 0.]])}
    grads = {'dW1': np.array([[ 0.63070583,  0.66482653,  0.18308507],
        [ 0.        ,  0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ]]),
 'dW2': np.array([[ 1.62934255,  0.        ,  0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ],
        [ 0.        ,  0.        ,  0.        ,  0.        ]]),
 'dW3': np.array([[-1.40260776,  0.        ,  0.        ]]),
 'da1': np.array([[ 0.70760786,  0.65063504],
        [ 0.17268975,  0.15878569],
        [ 0.03817582,  0.03510211]]),
 'da2': np.array([[ 0.39561478,  0.36376198],
        [ 0.7674101 ,  0.70562233],
        [ 0.0224596 ,  0.02065127],
        [-0.18165561, -0.16702967]]),
 'da3': np.array([[ 0.44888991,  0.41274769],
        [ 0.31261975,  0.28744927],
        [-0.27414557, -0.25207283]]),
 'db1': 0.75937676204411464,
 'db2': 0.86163759922811056,
 'db3': -0.84161956022334572}
    """
    np.random.seed(2)
    W1 = np.random.randn(3,4)
    b1 = np.random.randn(3,1)
    W2 = np.random.randn(1,3)
    b2 = np.random.randn(1,1)
    parameters = {"W1": W1,
                  "b1": b1,
                  "W2": W2,
                  "b2": b2}
    np.random.seed(3)
    dW1 = np.random.randn(3,4)
    db1 = np.random.randn(3,1)
    dW2 = np.random.randn(1,3)
    db2 = np.random.randn(1,1)
    grads = {"dW1": dW1,
             "db1": db1,
             "dW2": dW2,
             "db2": db2}
    
    return parameters, grads


4. 加载、加工数据

train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()

train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T 
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y

本周数据集与C1W2同,加载和加工方式也一样,不清楚可以回头看看作业。

准备完成,来搞起。


三、Let`s tango!

1. DNN构造步骤

  1. 初始化参数(Wl,bl)
  2. 迭代向前传播:
    1)单层向前传播的线性部分(linear)
    2)单层向前传播的激活部分(activation)
    3)迭代完成L-1层(relu)和第L层(sigmoid)
  3. 计算损失
  4. 反向传播:
    1)单层反向传播的线性部分(linear)
    2)单层反向传播的激活部分(activation)
    3)迭代完成L-1层(relu)和第L层(sigmoid)
  5. 更新参数
  6. 预测

注意:每个向前传播的模块,除了输出神经网络计算参数外,还需缓存一些数据(cache)。推荐将cache记在草稿上,以免混淆。


2. 初始化参数

2.1 单隐藏层

def initialize_parameters(n_x, n_h, n_y):
    
    W1 = np.random.randn(n_h, n_x) * 0.01
    b1 = np.zeros(shape=(n_h, 1))
    W2 = np.random.randn(n_y, n_h) * 0.01
    b2 = np.zeros(shape=(n_y, 1))
    
    # #断言检查
    assert (W1.shape == (n_h, n_x))
    assert (b1.shape == (n_h, 1))
    assert (W2.shape == (n_y, n_h))
    assert (b2.shape == (n_y, 1))
    
    parameters = {
        "W1": W1,
        "b1": b1,
        "W2": W2,
        "b2": b2,
    }
    
    return parameters


测试及运行结果:

# #测试
print("==============测试initialize_parameters==============")
parameters = initialize_parameters(3, 2, 1)

print("W1=" + str(parameters["W1"]))
print("b1=" + str(parameters["b1"]))
print("W2=" + str(parameters["W2"]))
print("b2=" + str(parameters["b2"]))
print("==============测试initialize_parameters==============")


# #运行结果
==============测试initialize_parameters==============
W1=[[-0.01244123 -0.00626417 -0.00803766]
 [-0.02419083 -0.00923792 -0.01023876]]
b1=[[0.]
 [0.]]
W2=[[ 0.01123978 -0.00131914]]
b2=[[0.]]
==============测试initialize_parameters==============

2.2 DNN

初始化的重点在于W和b的维度。

第l层线性传播:
Z [ L − 1 ] = W [ L − 1 ] A [ L − 2 ] + b [ L − 1 ] Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]} Z[L1]=W[L1]A[L2]+b[L1]

第l层W维度:
( n [ l ] , n [ l − 1 ] ) (n^{[l]}, n^{[l-1]}) (n[l],n[l1])
第l层b维度:
( n [ L − 1 ] , 1 ) (n^{[L-1]}, 1) (n[L1],1)

def initialize_parameters_deep(layerdims):
    """
    参数:
        layers_dims - 数组,涵盖数据层、输出层、隐藏层。每个元素数值对应NN每层的节点数。
    
    返回:
        parameters - 包含参数“W1”,“b1”,...,“WL”,“bL”的字典:
                     W1 - 权重矩阵,维度为(layers_dims [1],layers_dims [l-1])
                     bl - 偏向量,维度为(layers_dims [1],1)
    """  
    np.random.seed(3)
    parameters = {}
    L = len(layerdims)
    
    for l in range(1, L):
        parameters["W"+str(l)] = \
            np.random.randn(layerdims[l], layerdims[l - 1])/np.sqrt(layerdims[l - 1])
        parameters["b"+str(l)] = np.zeros(shape=(layerdims[l], 1))
        
        # #断言检查
        assert (parameters["W"+str(l)].shape == (layerdims[l],  
                                                 layerdims[l - 1]))
        assert (parameters["b"+str(l)].shape == (layerdims[l], 1))
        
    return parameters

layerdims这个参数再着重强调一下:包含NN全部层。比如下面加载数据集时,
配置layerdims=[12288, 20 , 7, 5, 1]。12288即为X特征数,1即为二分类输出层。中间的20、7、5均为隐藏层节点数。

测试

# #测试
print("==============测试initialize_parameters_deep==============")
layerdims = [5, 4, 3]

parameters = initialize_parameters_deep(layerdims)

print("W1=" + str(parameters["W1"]))
print("b1=" + str(parameters["b1"]))
print("W2=" + str(parameters["W2"]))
print("b2=" + str(parameters["b2"]))

print("==============测试initialize_parameters_deep==============")

运行结果:

==============测试initialize_parameters_deep==============
W1=[[ 0.79989897  0.19521314  0.04315498 -0.83337927 -0.12405178]
 [-0.15865304 -0.03700312 -0.28040323 -0.01959608 -0.21341839]
 [-0.58757818  0.39561516  0.39413741  0.76454432  0.02237573]
 [-0.18097724 -0.24389238 -0.69160568  0.43932807 -0.49241241]]
b1=[[0.]
 [0.]
 [0.]
 [0.]]
W2=[[-0.59252326 -0.10282495  0.74307418  0.11835813]
 [-0.51189257 -0.3564966   0.31262248 -0.08025668]
 [-0.38441818 -0.11501536  0.37252813  0.98805539]]
b2=[[0.]
 [0.]
 [0.]]
==============测试initialize_parameters_deep==============

结果里,每个矩阵的数值可能不一样,维度必须一致。


3. 向前传播

向前传播是一个基于层数的迭代运算,所以先编出单次运算。而单次传播又分为线型和非线性,故而编写步骤如下:

  1. 线性部分模块
  2. 非线性部分模块(dnn_utils已经给出,此步省略)
  3. 综上,以完成单次传播
  4. 基于层数的迭代运算

3.1 线性部分

公式:
Z [ L − 1 ] = W [ L − 1 ] A [ L − 2 ] + b [ L − 1 ] Z^{[L-1]} = W^{[L-1]} A^{[L-2]} + b^{[L-1]} Z[L1]=W[L1]A[L2]+b[L1]

def linear_foward(A, W, b):
    """

    参数:
        A - 上一层(或输入数据)的激活,维度为(nl-1,m)
        W - 权重矩阵,维度为(nl,nl-1)
        b - 偏向量,维度为(nl,1)

    返回:
         Z - 激活功能的输入
         cache - 缓存“A”,“W”和“b”,反向传播会用到
    """
    Z = np.dot(W, A) + b
    
    assert (Z.shape == (W.shape[0], A.shape[1]))
    
    cache = (A, W, b)
    
    return Z, cache

测试:

print("==============测试linear_foward==============")
A, W, b = testCases.linear_forward_test_case()
Z, cache = linear_foward(A, W, b)
print("Z" + str(Z))

print("==============测试linear_foward==============")

运行结果:

==============测试linear_foward==============
Z[[ 3.26295337 -1.23429987]]
==============测试linear_foward==============

3.2 非线性激活部分

本次会用到两个激活函数:
s i g m o i d : A = 1 1 + e − Z sigmoid: A = \frac{1}{1 + e^{-Z}} sigmoid:A=1+eZ1
r e l u : A = m a x ( 0 , Z ) relu: A = max(0, Z) relu:A=max(0,Z)

代码可见dnn_utils:

def sigmoid(Z):
    """
    Implements the sigmoid activation in numpy

    Arguments:
    Z -- numpy array of any shape

    Returns:
    A -- output of sigmoid(z), same shape as Z
    cache -- returns Z as well, useful during backpropagation
    """

    A = 1/(1+np.exp(-Z))
    cache = Z

    return A, cache

def relu(Z):
    """
    Implement the RELU function.

    Arguments:
    Z -- Output of the linear layer, of any shape

    Returns:
    A -- Post-activation parameter, of the same shape as Z
    cache -- a python dictionary containing "A" ; stored for computing the backward pass efficiently
    """

    A = np.maximum(0,Z)

    assert(A.shape == Z.shape)

    cache = Z 
    return A, cache

测试略

3.3 单次传播

包含线型及非线性部分,并缓存部分数据

def linear_activation_foward(A_prev, W, b, activation):
    """

    参数:
        A_prev - 来自上一层(或输入层)的激活,维度为(nl,m)
        W - 权重矩阵,维度为(nl,nl-1)
        b - 偏向量,维度为(nl,1)
        activation - 激活函数,分为:"sigmoid" 和 "relu"

    返回:
        A - 激活函数的输出
        cache - 缓存反向传播所需的数据
    """
    if activation == "sigmoid":
        Z, linear_cache = linear_foward(A_prev, W, b)
        A, activation_cache = dnn_utils.sigmoid(Z)
    elif activation == "relu":
        Z, linear_cache = linear_foward(A_prev, W, b)
        A, activation_cache = dnn_utils.relu(Z)
    
    cache = (linear_cache, activation_cache)
    
    assert (A.shape == (W.shape[0], A_prev.shape[1]))
    
    return A, cache

写到这一步,运算流程及数据应不难理解,但看到这些缓存(cache)可能头有点晕。不要慌,拿出一张草稿纸,将cache的目录,及每个目录下的数据列出来:

  • cache
    • linear_cache
      • A
      • W
      • b
    • activation_cache
      • Z

到反向传播,再来瞧这个。
另外说一句:这也是单隐藏层向前传播的程序

测试:

# #测试
print("==============测试linear_activation_foward==============")
A_prev, W, b = testCases.linear_activation_forward_test_case()

A, linear_activation_cache = linear_activation_foward(A_prev, W, b, 
                                                      activation="sigmoid")
print("sigmoid,A=" + str(A))

A, linear_activation_cache = linear_activation_foward(A_prev, W, b, 
                                                      activation="relu")
print("relu,A=" + str(A))

print("==============测试linear_activation_foward==============")

运行结果:

==============测试linear_activation_foward==============
sigmoid,A=[[0.96890023 0.11013289]]
relu,A=[[3.43896131 0.        ]]
==============测试linear_activation_foward==============

3.4 迭代向前传播

认真听课的同学应该知道:NN有L层,从第一层开始,需完成L-1层relu,在最后一层完成sigmoid。

def L_mode_foward(X, parameters):
    """
    参数:
        X - 数据集
        parameters - 包含Wl、bl的参数集,initialize_parameters_deep()的输出
    
    返回:
        AL - 第L层激活值
        caches - 每层缓存cache的集合(cache = (linear_cache,activation_cache))
    """
    caches = []
    A = X
    L = len(parameters) // 2  # #每一层均有W、b两个参数,故层数除2
    
    # #1~L-1层:relu
    for l in range(1, L):  # # for...in (a, b)数到b;for...in range(a, b)数到b-1;
        A_prev = A
        A, cache = \
            linear_activation_foward(A_prev, parameters['W' + str(l)], 
                                     parameters['b' + str(l)], "relu")
        caches.append(cache)
    
    # #L层:sigmoid
    AL, cache = linear_activation_foward(A, parameters['W' + str(L)], 
                                         parameters['b' + str(L)], "sigmoid")
    caches.append(cache)
    
    assert (AL.shape == (1, X.shape[1]))
    
    return AL, caches

测试:

# #测试
print("==============测试L_mode_foward==============")
X, parameters = testCases.L_model_forward_test_case()

AL, caches = L_mode_foward(X, parameters)

print("AL:" + str(AL))
print("caches长度:" + str(len(caches)))
print("==============测试L_mode_foward==============")

运行结果:

==============测试L_mode_foward==============
AL:[[0.17007265 0.2524272 ]]
caches长度:2
==============测试L_mode_foward==============

4. 计算成本

成本计算公式与单隐藏层太大差异,交叉熵损失函数:
J = − 1 m ∑ i = 0 m ( y ( i ) log ⁡ ( a [ L ] ( i ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − a [ L ] ( i ) ) ) (13) J = - \frac{1}{m} \sum\limits_{i = 0}^{m} \large{(} \small y^{(i)}\log\left(a^{[L] (i)}\right) + (1-y^{(i)})\log\left(1- a^{[L] (i)}\right) \large{)} \small\tag{13} J=m1i=0m(y(i)log(a[L](i))+(1y(i))log(1a[L](i)))(13)

def compute_cost(Y, AL):
    """
    实施等式(4)定义的成本函数。

    参数:
        Y - 标签集,维度为(1,m)
        AL - 包含第L层预测概率的数组,维度为(1,m)

    返回:
        cost - 交叉熵成本
    """
    m = Y.shape[1]
    
    # #np.log(AL)在前,否则可能运算溢出
    cost = (-1 / m) * np.sum(np.multiply(np.log(AL), Y) + 
                  np.multiply(np.log(1 - AL), (1 - Y)))
    
    cost = np.squeeze(cost)
    
    assert (cost.shape == ())
    
    return cost

测试:

print("==============测试compute_cost==============")
Y, AL = testCases.compute_cost_test_case()
cost = compute_cost(Y, AL)

print("损失:" + str(cost))
print("==============测试compute_cost==============")

运行结果:

==============测试compute_cost==============
损失:0.41493159961539694
==============测试compute_cost==============

5. 反向传播

重点来了。
为方便理解,笔者先将单次反向传播的公式列出:

  1. 非线性激活部分:
    d A [ l ] = ∂ J ∂   A [ l ] = − Y A [ l ] + 1 − Y 1 − A [ l ] dA^{[l]} = \frac{\partial J }{ \partial \ {A^{[l]}}} = -\frac{Y}{ A^{[l]}} + \frac{1 - Y}{ 1 - A^{[l]}} dA[l]= A[l]J=A[l]Y+1A[l]1Y
    d Z [ l ] = d A [ l ] ∗ g [ l ] ′ ( d Z [ l ] ) dZ^{[l]} =dA^{[l]} * g^{[l]'}(dZ^{[l]}) dZ[l]=dA[l]g[l](dZ[l])

  2. 线性部分:
    d W [ l ] = 1 m d Z [ l ] A [ l − 1 ] T dW^{[l]} = \frac{1}{m} dZ^{[l]} A^{[l-1]T} dW[l]=m1dZ[l]A[l1]T
    d b [ l ] = 1 m ∑ i = 1 m d Z [ l ] db^{[l]} = \frac{1}{m} \sum\limits_{i = 1}^{m}dZ^{[l]} db[l]=m1i=1mdZ[l]
    d A [ l − 1 ] = W [ l ] T d Z [ l ] dA^{[l-1]} = W^{[l]T}dZ^{[l]} dA[l1]=W[l]TdZ[l]

线性部分最后一步 W [ l ] W^{[l]} W[l]的转置可能有些人不明白,可以查看矩阵的求导:

f ( x ) = a T x f(x) = a^Tx f(x)=aTx
∂ f ∂   x = ∂ a T x ∂   x = a \frac{\partial f }{ \partial \ x} = \frac{\partial a^Tx }{ \partial \ x} = a  xf= xaTx=a

程序构造与向前传播类似:

  1. 线性部分模块
  2. 非线性部分模块(dnn_utils已经给出,此步省略)
  3. 综上,以完成单次传播
  4. 基于层数的迭代运算

5.1 非线性激活部分

基于本次使用的激活函数的导数代码亦可见dnn_utils:

def sigmoid_backward(dA, cache):
    """
    Implement the backward propagation for a single SIGMOID unit.

    Arguments:
    dA -- post-activation gradient, of any shape
    cache -- 'Z' where we store for computing backward propagation efficiently

    Returns:
    dZ -- Gradient of the cost with respect to Z
    """

    Z = cache

    s = 1/(1+np.exp(-Z))
    dZ = dA * s * (1-s)

    assert (dZ.shape == Z.shape)

    return dZ

def relu_backward(dA, cache):
    """
    Implement the backward propagation for a single RELU unit.

    Arguments:
    dA -- post-activation gradient, of any shape
    cache -- 'Z' where we store for computing backward propagation efficiently

    Returns:
    dZ -- Gradient of the cost with respect to Z
    """

    Z = cache
    dZ = np.array(dA, copy=True) # just converting dz to a correct object.

    # When z <= 0, you should set dz to 0 as well. 
    dZ[Z <= 0] = 0

    assert (dZ.shape == Z.shape)

    return dZ

来看看刚才的缓存:

  • cache
    • linear_cache
      • A
      • W
      • b
    • activation_cache
      • Z(这部分会用到哦

5.2 线性部分

def linear_backward(dZ, cache):
    """

    参数:
         dZ - Zl的梯度
         cache - 向前传播中对应层的缓存 linear_cache(A_prev,W,b)

    返回:
         dA_prev - Al-1的梯度,维度为(nl-1,m)
         dW - Wl的梯度,维度为(nl, nl-1)
         db - bl的梯度,维度为(nl, 1)
    """
    A_prev, W, b = cache
    m = A_prev.shape[1]
    
    dW = (1 / m) * np.dot(dZ, A_prev.T)
    db = (1 / m) * np.sum(dZ, axis=1, keepdims=True)
    
    dA_prev = np.dot(W.T, dZ)
    
    # #断言检查
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev, dW, db

强调一点:输出的dW、db均为l层,而dA为l-1层。

来看看刚才的缓存:

  • cache
    • linear_cache(这部分会用到哦
      • A
      • W
      • b
    • activation_cache
      • Z

各缓存数据的用处都清楚了吧。

测试:

# #测试
print("==============测试linear_backward==============")
dZ, linear_cache = testCases.linear_backward_test_case()
dA_prev, dW, db = linear_backward(dZ, linear_cache)

print("dA_prev:" + str(dA_prev))
print("dW:" + str(dW))
print("db:" + str(db))

print("==============测试linear_backward==============")

运行结果:

==============测试linear_backward==============
dA_prev:[[ 0.51822968 -0.19517421]
 [-0.40506361  0.15255393]
 [ 2.37496825 -0.89445391]]
dW:[[-0.10076895  1.40685096  1.64992505]]
db:[[0.50629448]]
==============测试linear_backward==============

5.3 单次传播

def linear_activation_backward(dA, cache, activation="relu"):
    """
    
    参数:
         dA - dAl的梯度
         cache - 向前传播中对应层的缓存(linear_cache,activation_cache)
         activation - 激活函数,分为:"sigmoid" 和 "relu"
    返回:
         dA_prev - Al-1的梯度,维度为(nl-1,m)
         dW - Wl的梯度,维度为(nl, nl-1)
         db - bl的梯度,维度为(nl, 1)
    """
    linear_cache, activation_cache = cache
    
    if activation == "relu":
        dZ = dnn_utils.relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    if activation == "sigmoid":
        dZ = dnn_utils.sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    
    return dA_prev, dW, db

这也是单隐藏层向前传播的程序

测试:

print("==============测试linear_activation_backward==============")
dA, linear_activation_cache = testCases.linear_activation_backward_test_case()
dA_prev, dW, db = linear_activation_backward(dA, linear_activation_cache, 
                                             activation="sigmoid")

print("sigmoid:")
print("dA_prev:" + str(dA_prev))
print("dW:" + str(dW))
print("db:" + str(db))

dA_prev, dW, db = linear_activation_backward(dA, linear_activation_cache, 
                                             activation="relu")

print("relu:")
print("dA_prev:" + str(dA_prev))
print("dW:" + str(dW))
print("db:" + str(db))
print("==============测试linear_activation_backward==============")

5.4 迭代运算

与向前传播的迭代类似,第L层为sigmoid激活导数,从L-1到0层为relu激活导数。
编写时需注意两点:

  1. 每次运算前需取出缓存
  2. 第l次迭代输出: 输出的dW、db均为l层,而dA为l-1层
def L_mode_B(AL, Y, caches):
    """
    对[LINEAR-> RELU] *(L-1) - > LINEAR - > SIGMOID组执行反向传播,就是多层网络的向后传播
    
    参数:
     AL - 正向传播第L层的激活输出矩阵
     Y - 标签集
     caches - 正向传播中,每层缓存cache的集合(cache = (linear_cache,activation_cache))
    
    返回:
     grads - 包含每层梯度值的字典
              grads [“dA”+ str(l)] = ...
              grads [“dW”+ str(l)] = ...
              grads [“db”+ str(l)] = ...
    """
    L = len(caches)
    grads = {}
    dAL = -np.divide(Y, AL) + np.divide(1 - Y, 1 - AL)  # #公式搞清楚
    grads["dA" + str(L)] = dAL  # #这一行没什么用,只是为对仗工整

    current_cache = caches[L - 1]
    grads["dA" + str(L - 1)], grads["dW" + str(L)], grads["db" + str(L)] = \
        activate_B(dAL, current_cache, activation="sigmoid")

    for l in reversed(range(L - 1)):
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = \
            activate_B(grads["dA" + str(l + 1)], current_cache, activation="relu")
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp

    return grads

测试:

print("==============测试L_mode_backward==============")
AL, Y, caches = testCases.L_model_backward_test_case()
grads = L_mode_backward(AL, Y, caches)

print("dA1:" + str(grads["dA1"]))
print("dW1:" + str(grads["dW1"]))
print("db1:" + str(grads["db1"]))
print("==============测试L_mode_backward==============")

运行结果:

==============测试L_mode_backward==============
dA1:[[ 0.          0.52257901]
 [ 0.         -0.3269206 ]
 [ 0.         -0.32070404]
 [ 0.         -0.74079187]]
dW1:[[0.41010002 0.07807203 0.13798444 0.10502167]
 [0.         0.         0.         0.        ]
 [0.05283652 0.01005865 0.01777766 0.0135308 ]]
db1:[[-0.22007063]
 [ 0.        ]
 [-0.02835349]]
==============测试L_mode_backward==============

6 更新参数

更新公式(α为学习率):
θ [ l ] = θ [ l ] − α ∂ J ∂ θ [ l ] \theta^{[l]} = \theta^{[l]} - \alpha \frac{\partial J }{ \partial \theta^{[l]} } θ[l]=θ[l]αθ[l]J
W [ l ] = W [ l ] − α ∗ d W [ l ] W^{[l]} = W^{[l]} - \alpha * dW^{[l]} W[l]=W[l]αdW[l]
b [ l ] = b [ l ] − α ∗ d b [ l ] b^{[l]} = b^{[l]} - \alpha * db^{[l]} b[l]=b[l]αdb[l]

def update_parameters(parameters, grads, learning_rate):
    """   
    参数:
     parameters - 包含Wl、bl的字典
     grads - 包含dAl、dWl、dbl的字典
    
    返回:
     parameters - 更新后的参数字典
    """
    L = len(parameters) // 2
    
    for l in range(L):
        parameters["W" + str(l + 1)] = \
            parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = \
            parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]
        
    return parameters

测试:

# #测试
print("==============测试update_parameters==============")
parameters, grads = testCases.update_parameters_test_case()
parameters = update_parameters(parameters, grads, learning_rate=0.1)

print("W1:" + str(parameters["W1"]))
print("b1:" + str(parameters["b1"]))
print("W2:" + str(parameters["W2"]))
print("b2:" + str(parameters["b2"]))
print("==============测试update_parameters==============")

运行结果:

==============测试update_parameters==============
W1:[[-0.59562069 -0.09991781 -2.14584584  1.82662008]
 [-1.76569676 -0.80627147  0.51115557 -1.18258802]
 [-1.0535704  -0.86128581  0.68284052  2.20374577]]
b1:[[-0.04659241]
 [-1.28888275]
 [ 0.53405496]]
W2:[[-0.55569196  0.0354055   1.32964895]]
b2:[[-0.84610769]]
==============测试update_parameters==============

至此,主程序各部分已经完成,该组合起来了。


7. 组合

7.1 单隐藏层

def two_layer_model(X, Y, layerdims, learning_rate, iterations_N, 
                    printcost=False,isPlot=True):
    
    np.random.seed(1)
    grads = {}
    costs = []
    (n_x, n_h, n_y) = layers_dims
    
    parameters = initialize_parameters(n_x, n_h, n_y)
    
    W1 = parameters["W1"]
    b1 = parameters["b1"]
    W2 = parameters["W2"]
    b2 = parameters["b2"]
    
    for i in range(0, iterations_N):
        # #正向
        A1, cache1 = linear_activation_foward(X, W1, b1, "relu")
        A2, cache2 = linear_activation_foward(A1, W2, b2, "sigmoid")
        
        cost = compute_cost(Y, A2)
        
        # #反向
        dA2 = -np.divide(Y, A2) + np.divide(1 - Y, 1 - A2)
        dA1, dW2, db2 = linear_activation_backward(dA2, cache2, "sigmoid")
        dA0, dW1, db1 = linear_activation_backward(dA1, cache1, "relu")
        
        grads["dW1"] = dW1
        grads["db1"] = db1
        grads["dW2"] = dW2
        grads["db2"] = db2
        
        # #更新参数
        parameters = update_parameters(parameters, grads, learning_rate)
        W1 = parameters["W1"]
        b1 = parameters["b1"]
        W2 = parameters["W2"]
        b2 = parameters["b2"]
        
        if i % 100 == 0:
            costs.append(cost)
            if printcost:
                print("第" + str(i) + "次迭代:" + str(np.squeeze(cost)))
        
    # #绘图
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel(costs)
        plt.xlabel(iterations_N)
        plt.title("learning_rate=" + str(learning_rate))
        plt.show()
    
    return parameters

加载数据后,开始运行:

print("==============测试two_layer_model==============")
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()

train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T 
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y
# #以上为加载数据,若之前已写则省略

n_x = 12288
n_h = 7
n_y = 1
layers_dims = (n_x, n_h, n_y)

parameters = two_layer_model(train_x, train_y, layerdims=(n_x, n_h, n_y), 
                             learning_rate=0.0075, iterations_N=2500, printcost=True, isPlot=True)

print("==============测试two_layer_model==============")

运行结果:

==============测试two_layer_model==============0次迭代:0.693049735659989100次迭代:0.6464320953428849200次迭代:0.6325140647912677300次迭代:0.6015024920354666400次迭代:0.5601966311605747500次迭代:0.5158304772764729600次迭代:0.4754901313943325700次迭代:0.43391631512257495800次迭代:0.4007977536203887900次迭代:0.358070501132379761000次迭代:0.33942815383664131100次迭代:0.305275363619626541200次迭代:0.27491377282130151300次迭代:0.246817682106148461400次迭代:0.198507350374660971500次迭代:0.174483181125566631600次迭代:0.170807629780968921700次迭代:0.113065245621647151800次迭代:0.096294268459371451900次迭代:0.083426179597268612000次迭代:0.074390787043190782100次迭代:0.066307481322679332200次迭代:0.059193295010381712300次迭代:0.053361403485605542400次迭代:0.04855478562877018
==============测试two_layer_model==============

在这里插入图片描述

7.2 单隐藏层预测

def predict(X, Y, parameters):
    """   
    参数:
     X - 数据集
     Y - 预测集
     parameters - 包含参数的字典
    
    返回:
     p - 预测结果
    """    
    m = X.shape[1]
    n = len(parameters) // 2
    p = np.zeros((1, m))
    
    probas, cache = L_mode_foward(X, parameters)
    
    for i in range(probas.shape[1]):
        if probas[0, i] > 0.5:
            p[0, i] = 1
        else:
            p[0, i] = 0
            
    print("准确度:" + str(np.sum((p == Y))/m))
    
    return p

运行:

predictions_train = predict(train_x, train_y, parameters)
predictions_test = predict(test_x, test_y, parameters)

运行结果:

准确度:1.0
准确度:0.72

比Logistic R.的0.70略有提升,再来试试多层

7.3 DNN及预测

def L_layer_model(X, Y, layerdims, learning_rate=0.0075, iterations_N=3000, 
                    printcost=False,isPlot=True):
    """  
    参数:
	    X - 数据集
        Y - 标签集
        layers_dims - 数组,涵盖数据层、输出层、隐藏层。每个元素数值对应NN每层的节点数。
        learning_rate - 学习率
        num_iterations - 迭代次数
        print_cost - 打印开关
        isPlot - 绘图开关
    
    返回:
     parameters - 包含更新后参数的字典。
    """ 
    np.random.seed(1)
    costs = []
    
    parameters = initialize_parameters_deep(layerdims)
    
    for i in range(0, iterations_N):
        AL, caches = L_mode_foward(X, parameters)

        cost = compute_cost(Y, AL)
        
        grads = L_mode_backward(AL, Y, caches)
        
        parameters = update_parameters(parameters, grads, learning_rate)
        
        if i % 100 == 0:
            costs.append(cost)
            if printcost:
                print("第" + str(i) + "次迭代:" + str(cost))
        
    if isPlot:
        plt.plot(np.squeeze(costs))
        plt.ylabel('costs')
        plt.xlabel('iterations_N (per tens)')
        plt.title("learning_rate" + str(learning_rate))
        plt.show()
    
    return parameters

加载数据,开始运行:

print("==============测试two_layer_model==============")
train_set_x_orig , train_set_y , test_set_x_orig , test_set_y , classes = lr_utils.load_dataset()

train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T 
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y
# #以上为加载数据,若之前已写则省略

layers_dims = [12288, 20, 7, 5, 1]  # #5层NN
parameters = L_layer_model(train_x, train_y, layers_dims, 
                           iterations_N=2500, printcost=True, isPlot=True)

print("==============测试two_layer_model==============")

运行结果:

0次迭代:0.7157315134137129100次迭代:0.6747377593469114200次迭代:0.6603365433622128300次迭代:0.6462887802148751400次迭代:0.6298131216927771500次迭代:0.606005622926534600次迭代:0.5690041263975134700次迭代:0.519796535043806800次迭代:0.46415716786282296900次迭代:0.408420300482989161000次迭代:0.373154992160690541100次迭代:0.30572374573047131200次迭代:0.26810152847740861300次迭代:0.2387247482767251400次迭代:0.206322632579147071500次迭代:0.179438869274934521600次迭代:0.157987358188005631700次迭代:0.14240413012273071800次迭代:0.12865165997881371900次迭代:0.112443149981414012000次迭代:0.0850563103494172100次迭代:0.0575839119858845562200次迭代:0.0445675345468552300次迭代:0.038082751665935532400次迭代:0.03441074901837627

在这里插入图片描述
执行预测:

pre_train = predict(train_x, train_y, parameters)
pre_test = predict(test_x, test_y, parameters)

运行结果:

准确度:0.9952153110047847
准确度:0.78

对比单隐藏层的0.72,也有一些提升。有兴趣的同学可以试试其它参数,看看有没有更大的提升。


四、可选部分

1. 预测错误分析

找出哪些错误预测

def name_differences(X, Y, AL):
    
    m = Y.shape[1]
    Difference_ID = []
    diff_N = 0
    # diff = AL + Y
    # diff_ID = np.asarray(np.where(diff == 1))

    for i in range(m):
        if AL[0, i] != Y[0, i]:
            Difference_ID.append(i)
            diff_N = diff_N + 1
           
    for j in range(diff_N):
        index = Difference_ID[j]
        plt.imshow(X[:, index].reshape(64, 64, 3))
        # #这里考虑到以下train_x是处理后的数据(转置过),故用X[:, index],若是原始数据,则反过来
        # plt.imshow(train_set_x_orig[Difference_ID[j], :])
        plt.show()
    
    return Difference_ID, diff_N
    
Difference_ID_train, diff_N_train = name_differences(train_x, train_y, AL_train)
Difference_ID_test, diff_N_test = name_differences(test_x, test_y, AL_test)

运行结果:

错误序号:[92]  # #训练集
错误数目:1  # #训练集
错误序号:[5, 6, 13, 19, 28, 29, 34, 44, 45, 46, 48]  # #测试集
错误数目:11  # #测试集

图片我就不摆了,见参考文献
原因分析(有的原因我也不太懂。。。):

  • 猫身体在一个不同的位置
  • 猫出现在相似颜色的背景下
  • 不同的猫的颜色和品种
  • 相机角度
  • 图片的亮度
  • 比例变化(猫的图像非常大或很小

2. 用自己的图片试试

注意:此段代码在resize图片方面可能涉及Python(scipy库)的版本问题

my_cat.jpg:
在这里插入图片描述
代码:

# #读取自己的照片
# #需将my_cat.jpg粘贴到目录下

my_image = "my_cat.jpg"
my_label = np.array([1])
my_label = my_label.reshape(1, 1)
num_px = 64

fname = my_image
# #3.72无scipy.mic,使用以下命令
image = np.array(plt.imread(fname, format=None))
my_image = np.array(Image.fromarray(image).resize((num_px, num_px))).\
    reshape(num_px*num_px*3, 1)
# #3.72无scipy.mic,使用以上命令

# #若之前Python版本,可尝试:
# image = np.array(ndimage.imread(fname, flatten=False))
# my_image = scipy.misc.imresize(image, size=(num_px,num_px)).reshape((num_px*num_px*3,1))

plt.imshow(image)

# print(my_image.shape)
my_predicted_image, my_AL = predict(my_image, my_label, parameters)

print("y = " + str(np.squeeze(my_label)))
print("预测:" + str(my_AL[0, 0]))

运行结果:

(12288, 1)
y = 1
预测:1.0

完整代码

最后说一句:以后的程序会越来越复杂,模块越来越多。所以写代码时不建议在.py调试,在Jupyter notebook编写,调试完毕贴到.py即可。

import numpy as np
import matplotlib.pyplot as plt
import dnn_utils
import lr_utils
import scipy.misc
import testCases
from scipy import ndimage
from PIL import Image

np.random.seed(1)


# #初始化
def initialize_paras(layerdims):  # #layerdims为NN所有层数,这一点要解释清楚。

    np.random.seed(3)
    parameters = {}
    L = len(layerdims)  # #代码中出现的几个L需要解释

    for l in range(1, L):
        parameters["W" + str(l)] = \
            np.random.randn(layerdims[l], layerdims[l - 1]) / np.sqrt(layerdims[l - 1])

        parameters["b" + str(l)] = np.zeros((layerdims[l], 1))

    return parameters

# #forward——线型部分
def linear_F(A, W, b):

    Z = np.dot(W, A) + b

    cache = (A, W, b)

    return Z, cache

# #forward——激活部分
def activate_F(A_prev, W, b, activation):

    if activation == "relu":
        Z, linear_cache = linear_F(A_prev, W, b)
        A, activation_cache = dnn_utils.relu(Z)

    elif activation == "sigmoid":
        Z, linear_cache = linear_F(A_prev, W, b)
        A, activation_cache = dnn_utils.sigmoid(Z)

    cache = (linear_cache, activation_cache)

    return A, cache

# #forwar——L_mode
def L_mode_F(X, parameters):

    caches = []
    A = X
    L = len(parameters) // 2

    for l in range(1, L):
        A_prev = A
        A, cache = activate_F(A_prev, parameters["W" + str(l)], parameters["b" + str(l)], "relu")
        caches.append(cache)

    AL, cache = activate_F(A, parameters["W" + str(L)], parameters["b" + str(L)], "sigmoid")
    caches.append(cache)

    return AL, caches

# #计算损失
def compute_cost(Y, AL):

    m = Y.shape[1]

    cost = (-1 / m) * np.sum(np.multiply(np.log(AL), Y) + np.multiply(np.log(1 - AL), 1 - Y))

    return cost

# #backward——线型部分
def linear_B(dZ, cache):

    m = dZ.shape[1]
    (A, W, b) = cache

    dW = (1 / m) * np.dot(dZ, A.T)
    db = (1 / m) * np.sum(dZ, axis=1, keepdims=True)

    dA_prev = np.dot(W.T, dZ)

    return dA_prev, dW, db

# #backward——激活部分
def activate_B(dA, cache, activation):

    (linear_cache, activate_cache) = cache
    if activation == "relu":
        dZ = dnn_utils.relu_backward(dA, activate_cache)
        dA_prev, dW, db = linear_B(dZ, linear_cache)

    elif activation == "sigmoid":
        dZ = dnn_utils.sigmoid_backward(dA, activate_cache)
        dA_prev, dW, db = linear_B(dZ, linear_cache)

    return dA_prev, dW, db


# #backward——L_mode
def L_mode_B(AL, Y, caches):

    L = len(caches)
    grads = {}
    dAL = -np.divide(Y, AL) + np.divide(1 - Y, 1 - AL)  # #公式搞清楚
    grads["dA" + str(L)] = dAL  # #这一行没什么用,只是为对仗工整

    current_cache = caches[L - 1]
    grads["dA" + str(L - 1)], grads["dW" + str(L)], grads["db" + str(L)] = \
        activate_B(dAL, current_cache, activation="sigmoid")

    for l in reversed(range(L - 1)):
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = \
            activate_B(grads["dA" + str(l + 1)], current_cache, activation="relu")
        grads["dA" + str(l)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp

    return grads


# #更新参数
def update_paras(parameters, grads, learning_rate):

    L = len(parameters) // 2

    for l in range(L):
        parameters["W" + str(l + 1)] = \
            parameters["W" + str(l + 1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l + 1)] = \
            parameters["b" + str(l + 1)] - learning_rate * grads["db" + str(l + 1)]

    return parameters


# #L_mode_NN
def L_mode_NN(X, Y, layerdims, learning_rate, iterations_N, printcost=False, isPlot=True):

    np.random.seed(1)

    costs = []
    parameters = initialize_paras(layerdims)

    for i in range(iterations_N):

        AL, caches = L_mode_F(X, parameters)

        cost = compute_cost(Y, AL)

        grads = L_mode_B(AL, Y, caches)

        parameters = update_paras(parameters, grads, learning_rate)

        if i % 100 == 0:
            costs.append(cost)
            if printcost:
                print("第" + str(i) + "次迭代:" + str(cost))

    if isPlot:
        plt.plot(costs)
        plt.ylabel('costs')
        plt.xlabel('iterations')
        plt.title('learning_rate:' + str(learning_rate))
        plt.show()

    return parameters


# #加载数据
train_set_x_orig, train_set_y, test_set_x_orig, test_set_y, classes = lr_utils.load_dataset()

train_x_flatten = train_set_x_orig.reshape(train_set_x_orig.shape[0], -1).T
test_x_flatten = test_set_x_orig.reshape(test_set_x_orig.shape[0], -1).T

train_x = train_x_flatten / 255
train_y = train_set_y
test_x = test_x_flatten / 255
test_y = test_set_y

# #开始测试
layerdims = [12288, 20, 7, 5, 1]
parameters = L_mode_NN(train_x, train_y, layerdims, 0.0075, 2500, printcost=True, isPlot=True)


# #预测
def predict(X, Y, parameters):  # #注意predict的输入。即,predict需包含L_mode_NN

    AL, caches = L_mode_F(X, parameters)

    m = Y.shape[1]

    for i in range(m):
        if AL[0, i] > 0.5:
            AL[0, i] = 1
        else:
            AL[0, i] = 0

    allzeros = np.sum(np.multiply(AL, Y))
    allones = np.sum(np.multiply(1 - AL, 1 - Y))

    prediction = (allzeros + allones) / m

    return prediction, AL


prediction_train, AL_train = predict(train_x, train_y, parameters)
prediction_test, AL_test = predict(test_x, test_y, parameters)

print(prediction_train)
print(prediction_test)


# #查看哪些不对
def name_differences(X, Y, AL):
    m = Y.shape[1]
    Difference_ID = []
    diff_N = 0
    # diff = AL + Y
    # diff_ID = np.asarray(np.where(diff == 1))

    for i in range(m):
        if AL[0, i] != Y[0, i]:
            Difference_ID.append(i)
            diff_N = diff_N + 1

    for j in range(diff_N):
        plt.imshow(X[:, Difference_ID[j]].reshape(64, 64, 3))
        # #这里考虑到以下train_x是处理后的数据(转置过),故用X[:, index],若是原始数据,则反过来
        # plt.imshow(train_set_x_orig[Difference_ID[j], :])
        plt.show()

    return Difference_ID, diff_N

Difference_ID_train, diff_N_train = name_differences(train_x, train_y, AL_train)
Difference_ID_test, diff_N_test = name_differences(test_x, test_y, AL_test)

# #读取自己的照片
my_image = "my_cat.jpg"
my_label = np.array([1])
my_label = my_label.reshape(1, 1)
num_px = 64

fname = my_image
image = np.array(plt.imread(fname, format=None))
my_image = np.array(Image.fromarray(image).resize((64, 64))).\
    reshape(64*64*3, 1)
plt.imshow(image)

# print(my_image.shape)
my_predicted_image, my_AL = predict(my_image, my_label, parameters)

print("y = " + str(np.squeeze(my_label)))
print("预测:" + str(my_AL[0, 0]))

End.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值