前言:
本次实验是基于MATLAB平台搭建二维码识别系统,步骤包括二值化,边界去除,开运算,二维码提取,倾斜校正,调用zxing库识别等,最终搭建GUI面板统一实现所有功能。
实验前准备:
MATLAB2023a,Image Processing Toolbox,Image Acquisition Toolbox,OS Generic Video Interface,USB Webcams,QR Code encode and decode,QR CodeGenerator1.1 based on zxing
具体实验步骤:
一.图像的获取
获取图像的基本过程是打开文件夹,选择所需图片并投放在axes上,代码如下:
%打开文件夹
[filename,pathname]=uigetfile({'*.*'},'选择图像');
if isequal(filename,0)||isequal(pathname,0)
errordlg('您还没有选取图片!!','温馨提示');%如果没有输入,则创建错误对话框
return;
else
image=[pathname,filename];%合成路径+文件名
im=imread(image);%读取图像
axes(handles.axes2);
imshow(im,[]);
end
涉及函数:
(1)uigetfile
功能:获取文件路径及文件名。
(2)imread
功能:读取文件。
效果:
二.图像二值化
图像的二值化处理就是将图像上的点的灰度值设为0或255,也就是将整个图像呈现出明显的黑白效果。即将256个亮度等级的灰度图像通过适当的阈值选取而获得仍然可以反映图像整体和局部特征的二值化图像,代码如下:
gray = rgb2gray(glo_im) ; %将彩图imge转化为灰度图像gray
threshold = graythresh (gray) ; %获取灰度图像gray的阈值
bw = imbinarize(gray, threshold); %将灰度图像gray转化为二值图像bw
axes(handles.axes2);
imshow(bw,[]);
涉及函数:
(1)rgb2gray
功能:把彩色rgb图像转化为灰度图。
(2)graythresh
功能:计算一个把灰度图转化为二值图像的阈值。
(3)imbinarize
功能:把灰度图像(grayscale image)转换成二值图像,需要两个基本输入参数,即待处理的输入图像和阈值。
效果:
三.去除边界
二值化后图像有大块与图像边界相连的边界区域,可以通过去除边界对象得到相对干净的二维码对象,代码如下:
J = imcomplement(glo_im);%反色
JNoBorder = imclearborder(J);%去除边界
涉及函数:
(1)imclearborder
功能:清除与图像边界相连接的像素。
注:如果与边界相连的为白色,则不需要反色。
效果:
四.开运算去噪
去除边界后,图像上有很多白色的小点。这些小点可以通过开运算去除,开运算属于形态学图像处理,需要先腐蚀后膨胀,代码如下:
se=strel('line',11,90);
BW=imerode(glo_im, se); %进行腐蚀处理
BW2=imdilate(BW, se); %进行膨胀处理
axes(handles.axes2);
imshow(BW2,[]);
涉及函数:
(1)strel
功能:运用各种形状和大小构造元素。
(2)imdilate
功能:使用 imdilate 函数对图像进行膨胀处理, imdilate 函数需要两个基本输入参数,即待处理的输入图像和结构元素对象。
(3)imerode
功能:对图像进行腐蚀处理。