机器学习
机器学习的解释
机器学习可以从数据中寻找规律,建立关系,根据建立的关系去解决问题。假设要对某个数据进行预测,通常我们会输入一个函数,为机器提供自变量并让它输出因变量。而机器学习则不需要这个我们提前预设好的函数,只需要提供大量的数据,让它自己学习数据间的关系,自己生成x和y的函数关系,基于数据实现自我优化和升级。
机器学习的类别
- 监督学习(Supervised Learning)-训练数据包括正确结果(标签label),我们为机器提供正确的分类。应用场景:人脸识别、语音诊断等
- 无监督学习(Unsupervised Learning)-训练数据不包括正确的结果,机器对数据自动分类。应用场景:新闻聚类
- 半监督学习(Semi-supervised Learning)-训练数据包括少量正确的结果,我们为机器提供一丢丢正确的分类。适用于数据有限但是需要正确分类的情况
- 强化学习(Reinforcement Learning)-根据每次结果收获的奖惩进行学习(给分数),实现优化,程序逐步寻找获得最高分的方法。应用场景:AlphaGo
各类别对应内容
- 监督学习:线性回归、逻辑回归、决策树、神经网络、卷积神经网络、循环神经网络
- 无监督学习:聚类算法
Anaconda、Jupyter Notebook简介
Anaconda
Anaconda是用来进行包管理、环境管理等的工具。它可以隔离开不同的python版本,让项目使用的包独立出来。Anaconda 预装了诸如 NumPy、Pandas、SciPy、Matplotlib 等广泛使用的科学计算库,使得数据分析和可视化更为方便。在后续的人工智能学习中会频繁使用这些库。
Jupyter Notebook
Jupyter提供了一个web页面可以对代码进行编辑和编译运行。还有神奇的运行某一块代码的功能,方便代码测试。
Anaconda下载配置
下载Anaconda
下载地址:https://www.anaconda.com/
勾选添加到环境变量,如果没有勾选,手动将以下路径加入path环境变量(找你安装Anaconda的文件夹anaconda,把绝对路径放到环境变量里,以下只是缩略的示例):
\anaconda
\anaconda\Scripts
\anaconda\Library\bin
\anaconda\Library\mingw-w64\bin
启动Anaconda Navigator
Win+R,进入cmd后输入Anaconda Navigator/直接开始搜索Anaconda Navigator即可。
创建新的环境
输入搜索Anaconda Prompt并打开,可以看到现在所处的虚拟环境名为(base),输入以下命令创建新的虚拟环境:
conda create -n [name]
在name中输入新环境的名称,然后激活环境:
conda activate [name]
在命令行中可以看到,虚拟环境名称变成了新的name。
Jupyter Notebook下载
Jupyter Notebook安装
完成上面的操作后回到Anaconda Navigator界面,可以看到新建的First_AI环境已在列表中。选中我们新创建的环境后Jupyter应该是没有安装的,可以先点击Install,然后就可以点击launch启动。
Jupyter界面一览
点击launch打开Jupyter后,会从浏览器打开一个web网页localhost:8888
打开成功后长这个样子:
每个人的都不一样,其中可以看到打开路径下你计算机中的文件,你可以在这里对你的计算机文件进行编辑、新建、保存等等操作。