题目:给出一个 m*n 的二维矩阵(元素可为正可为负),求该二维矩阵的一个子矩阵,且此子矩阵中所有元素的和最大,并输出该矩阵的和。
举例(1)
给出4*4的二维矩阵:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
和最大的子矩阵为:
9 2
-4 1
-1 8
此子矩阵元素的和为15。
举例(2)
给出3*4的二维矩阵:
-1 -2 -3 -4
-5 -6 -7 -8
-9 -10 -11 -12
和最大的子矩阵为:
-1
此子矩阵元素的和为-1。
思路:枚举矩阵,把子矩阵转化为一行,利用最大子数组和的方法求解
方法:
假设f(i,j)表示以第i行开始,到第j行结束的矩阵中子矩阵的最大和
为了求f(i,j),我们对这个矩阵(第i行开始,到第j行结束的矩阵)进行处理:
(1)把这个矩阵中的每一列数相加,最后形成一个一维数组,其长度等于原二维数组列的个数。
(2)在该一维数组上,求解最大子数组和。
代码:求解最大子矩阵和
#include <iostream>
#include <assert.h>
using namespace std;
/*最大子数组之和*/
int MaxSubSum(int nArr[],int nLen)
{
assert(nArr && nLen > 0);
int nMaxSum = nArr[0];
int nCurSum = nArr[0];
for (int i = 1;i < nLen;i++)
{
if (nCurSum < 0)
{
nCurSum = nArr[i];
}
else
{
nCurSum += nArr[i];
}
nMaxSum = max(nCurSum,nMaxSum);
}
return nMaxSum;
}
/*把原矩阵第i行和第j行之间元素进行压缩,形成一个一维数组*/
void GetColSum(int** pnArr,int* pTmpArr,int nXLen,int nYLen,int nStartRow,int nEndRow)
{
assert(pnArr && *pnArr && pTmpArr && nXLen > 0 && nYLen > 0);
assert(nStartRow >=0 && nStartRow < nXLen);
assert(nEndRow >=0 && nEndRow < nYLen);
memset(pTmpArr,0,sizeof(int) * nYLen);
for (int j = 0;j < nYLen;j++)
{
for (int i = nStartRow;i <= nEndRow;i++)
{
pTmpArr[j] += pnArr[i][j];
}
}
}
/*枚举二维数组,压缩成一维数组,求解最大子数组和*/
int MaxSubMatrixSum(int** pnArr,int nXLen,int nYLen)
{
assert(pnArr && *pnArr && nXLen > 0 && nYLen > 0);
int nMaxSum = -0x3f3f3f3f;
int* pTmpArr = new int[nYLen];
int nCurSum = -0x3f3f3f3f;
for (int i = 0;i < nXLen;i++)
{
for (int j = i;j < nXLen;j++)
{
//计算每列元素和
GetColSum(pnArr,pTmpArr,nXLen,nYLen,i,j);
//求最大子数组和
nCurSum = MaxSubSum(pTmpArr,nYLen);
nMaxSum = max(nCurSum,nMaxSum);
}
}
return nMaxSum;
}
int main()
{
int nXLen = 0;
int nYLen = 0;
cin>>nXLen>>nYLen;
int** pnArr = new int*[nXLen];
for (int i = 0;i < nXLen;i++)
{
pnArr[i] = new int[nYLen];
for (int j = 0;j < nYLen;j++)
{
cin>>pnArr[i][j];
}
}
cout<<MaxSubMatrixSum(pnArr,nXLen,nYLen)<<endl;
system("pause");
return 1;
}
问题:在上面的程序中,由二维子矩阵压缩成一维矩阵时,直接对子矩阵中某列所有元素全加在一起得到,效率低啊。时间复杂度O((m*n)^2)
优化:给出一个二维子矩阵,为了更快地求出其对应的一维矩阵,我们可以使用二维数组sum[x][y]预先保存第y列,从第0行到第x行之间元素之和。
此时,我们要求第i行开始,到第j行结束的矩阵对应的一维矩阵时,可有sum[j][t] - sum[i - 1][t],t属于[0,n]得到.
此时,时间复杂度为O(m*m*n)
代码:求解最大子矩阵和
#include <iostream>
#include <assert.h>
using namespace std;
/*最大子数组之和*/
int MaxSubSum(int nArr[],int nLen)
{
assert(nArr && nLen > 0);
int nMaxSum = nArr[0];
int nCurSum = nArr[0];
for (int i = 1;i < nLen;i++)
{
if (nCurSum < 0)
{
nCurSum = nArr[i];
}
else
{
nCurSum += nArr[i];
}
nMaxSum = max(nCurSum,nMaxSum);
}
return nMaxSum;
}
/*把原矩阵第i行和第j行之间元素进行压缩,形成一个一维数组*/
void InitSumArr(int** pnArr,int** pnArrColSum,int nXLen,int nYLen)
{
assert(pnArr && *pnArr && pnArrColSum && *pnArrColSum);
assert(nXLen > 0 && nYLen > 0);
for (int i = 0;i < nXLen;i++)//横坐标
{
for (int j = 0;j < nYLen;j++)//纵坐标
{
pnArrColSum[i][j] = 0;
for (int t = 0;t <= i;t++)
{
pnArrColSum[i][j] += pnArr[t][j];
}
}
}
}
/*枚举二维数组,压缩成一维数组,求解最大子数组和*/
int MaxSubMatrixSum(int** pnArr,int** pnArrColSum,int nXLen,int nYLen)
{
assert(pnArr && *pnArr && pnArrColSum && *pnArrColSum);
assert(nXLen > 0 && nYLen > 0);
int nMaxSum = -0x3f3f3f3f;
int nCurSum = -0x3f3f3f3f;
int* pTmpArr = new int[nYLen];
for (int i = 0;i < nXLen;i++)
{
for (int j = i;j < nXLen;j++)
{
if (i == 0)
{
for (int t = 0;t < nYLen;t++)
{
pTmpArr[t] = pnArrColSum[j][t];
}
nCurSum = MaxSubSum(pTmpArr,nYLen);
nMaxSum = max(nCurSum,nMaxSum);
}
else
{
//计算每列元素和,并求最大子数组之和
for (int t = 0;t < nYLen;t++)
{
pTmpArr[t] = pnArrColSum[j][t] - pnArrColSum[i - 1][t];
}
nCurSum = MaxSubSum(pTmpArr,nYLen);
nMaxSum = max(nCurSum,nMaxSum);
}
}
}
return nMaxSum;
}
int main()
{
int nXLen = 0;
int nYLen = 0;
cin>>nXLen>>nYLen;
int** pnArr = new int*[nXLen];
int** pnArrColSum = new int*[nXLen];
for (int i = 0;i < nXLen;i++)
{
pnArr[i] = new int[nYLen];
pnArrColSum[i] = new int[nYLen];
for (int j = 0;j < nYLen;j++)
{
cin>>pnArr[i][j];
}
}
InitSumArr(pnArr,pnArrColSum,nXLen,nYLen);
cout<<MaxSubMatrixSum(pnArr,pnArrColSum,nXLen,nYLen)<<endl;
system("pause");
return 1;
}
数据输入:
4 4
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
输出:15
这里不再给出求子矩阵区间的代码。