CCF-CSP第36次认证第二题——梦境巡查【NA!!前缀和思想】

CCF-CSP第36次认证第二题——梦境巡查

官网链接:TUOJ

时间限制: 1.0 秒

空间限制: 512 MiB

相关文件: 题目目录

题目背景

传说每当月光遍布西西艾弗岛,总有一道身影默默守护着居民们的美梦。

参考思路

参考视频:【202412(第36次)CSP真题202412-1,2讲解】 https://www.bilibili.com/video/BV1XkfjYsEsj/?share_source=copy_web&vd_source=9d80e7e6ef9c3f34266696356fc5543f

【刚开始没看懂,后来自己在草稿纸上画图演算突然醒悟了】

哔哩哔哩

参考题解 

#include <iostream>
#include <vector>
#include <algorithm>
#include <climits>

using namespace std;

int main () {
	int n;
	cin >> n;
	vector<int> a(n + 1);
	for(int i = 0; i <= n; i++) {
		cin >> a[i];
	}
	vector<int> b(n + 1);
	for(int i = 1; i <= n; i++) {
		cin >> b[i];
	}
	
	vector<int> sum(n + 1);//前缀和数组,相当于草稿纸上用到的wi
	vector<int> pre_max(n + 1);//前缀和的最大值 
	sum[0] = a[0];
	pre_max[0] = sum[0];
	for(int i = 1; i <= n; i++) {
		sum[i] = sum[i - 1] + a[i] - b[i];
		pre_max[i] = max(sum[i], pre_max[i - 1]);
	}
	vector<int> suf_max(n + 1);//逆序对前缀和处理后的最大值 
	suf_max[n] = sum[n];
	for(int i = n - 1; i >= 1; i--) {
		suf_max[i] = max(sum[i], suf_max[i + 1]);
	}
	//输出结果 
	for(int i = 1; i <= n; i++) {
		int ans = max(pre_max[i - 1], suf_max[i] + b[i]);
		cout << ans << " ";
	}
	return 0;
}

复习误区:又重复了优化前的问题,逆序求最大值就是为了避免嵌套循环,提高效率

#include <iostream>
#include <vector>

using namespace std;

int main () {
	int n;
	cin >> n;
	
	vector<int> a(n + 1);
	vector<int> b(n + 1);
	
	for(int i = 0; i <= n; i++) {
		cin >> a[i];
	}
	for(int i = 1; i <= n; i++) {
		cin >> b[i];
	}
	
	vector<int> c(n + 1, 0);//存ai - bi的前缀和 
	c[0] = a[0];
	int max0 = c[0];
	for(int i = 1; i <= n; i++) {
		c[i] = c[i - 1] + a[i] - b[i];
		if(c[i] > max0){
			max0 = c[i];
		}
	}
	
	for(int i = 1; i <= n; i++) {
		int max = max0;
		for(int j = n; j >= i; j--) {
			if(c[j] + b[i] > max)
				max = c[j] + b[i];
		}
		
		cout << max << " ";
	}
	return 0;
}

总结

前缀和,后缀和

前缀和和后缀和是两种常见的思想,用于快速计算数组(或序列)中某个范围内的和。它们通过预处理数据来减少后续操作的时间复杂度,常用于解决一些涉及区间求和的问题。

  1. 前缀和

    • 前缀和是一个累积和的概念,表示数组中每个元素及其前面所有元素的和。即 prefix[i] = arr[0] + arr[1] + ... + arr[i]
    • 利用前缀和数组,给定一个区间 [l, r],区间和可以通过 prefix[r] - prefix[l-1] 快速计算出来,从而减少了区间和计算的时间复杂度,从 O(n) 降低到 O(1)。
  2. 后缀和

    • 后缀和与前缀和相似,但它是从数组的末尾向前累积的。即 suffix[i] = arr[i] + arr[i+1] + ... + arr[n-1]
    • 使用后缀和数组,类似地,给定区间 [l, r] 的后缀和也可以快速计算。

这两种思想主要用于优化范围查询问题,尤其是在需要频繁计算区间和的场景下,非常有效。

相同输入,多次运行结果不同的可能原因

1. 未定义行为 (Undefined Behavior)

  • 越界访问数组:访问数组时,超出了数组的边界,导致程序读取未定义的内存区域,产生不稳定的结果。
  • 空指针或悬空指针:在未初始化或已删除的指针上进行操作,会导致访问错误的内存位置。
  • 数据竞争:在多线程程序中,如果多个线程同时访问和修改共享数据而没有适当的同步措施,可能会导致数据不一致。
  • 使用未初始化的变量:未初始化的局部变量有时会包含垃圾值,导致程序行为不可预测。

2. 随机数

  • 如果程序依赖于随机数生成(如 rand()std::random),且未正确设置随机种子(如未调用 srand() 或使用不稳定的种子),则每次运行时随机数序列可能不同,从而导致不同的结果。

3. 多线程或并发问题

  • 线程调度不确定性:在并发程序中,线程的执行顺序由操作系统决定,如果没有正确的同步机制,多个线程同时访问共享资源时可能导致竞态条件(race conditions),从而导致结果不稳定。
  • 死锁或活锁:多个线程相互等待对方释放资源,导致程序挂起或无限循环,可能在不同的执行中表现不同。

感想

 这道题刚开始一直想不通,在网上看了别人的题解,也问了deepseek等等,还是不太理解,就先放一边了,隔了几天又去看才想明白,这次只花了一个小时完成思路整理和编程,还是比较满意的,写完以后也还是很有成就感的。

这道题难点在于思路,建议先当作数学题,推出求解过程,想清楚如何求解。

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值