Fourier Series
x ( t ) = ∑ n = − ∞ n = + ∞ X [ n ] e j n w t , X [ n ] = ∫ τ τ + T x ( t ) e − j n w t d t ∫ τ τ + T e j n w t e − j n w t d t x(t)= \sum_{n=-\infty}^{n=+\infty} X[n] e^{jnwt} , \quad X[n]= \frac{ \displaystyle \int_{\tau}^{\tau + T} x(t) e^{-jnwt} dt }{ \displaystyle \int_{\tau}^{\tau + T} e^{jnwt} e^{-jnwt} dt } x(t)=n=−∞∑n=+∞X[n]ejnwt,X[n]=∫ττ+Tejnwte−jnwtdt∫ττ+Tx(t)e−jnwtdt
x ( t ) = ∑ n = − ∞ n = + ∞ ∫ τ 0 τ 0 + T x ( τ ) e − j n w τ d τ ∫ τ 0 τ 0 + T e j n w τ e − j n w τ d τ e j n w t , X [ n ] = ∫ τ τ + T ( ∑ m = − ∞ m = + ∞ X [ m ] e j m w t ) e − j n w t d t ∫ τ τ + T e j n w t e − j n w t d t x(t)= \sum_{n=-\infty}^{n=+\infty} \frac{ \displaystyle \int_{\tau_0}^{\tau_0 + T} x(\tau) e^{-j n w \tau} d \tau }{ \displaystyle \int_{\tau_0}^{\tau_0 + T} e^{j n w \tau} e^{- j n w \tau} d \tau } e^{jnwt} , \quad X[n]= \frac{ \displaystyle \int_{\tau}^{\tau + T} \left( \sum_{m=-\infty}^{m=+\infty} X[m] e^{jmwt} \right) e^{-jnwt} dt }{ \displaystyle \int_{\tau}^{\tau + T} e^{jnwt} e^{-jnwt} dt } x(t)=n=−∞∑n=+∞∫τ0τ0+Tejnwτe