傅里叶变换入门

本文介绍了傅里叶级数和傅里叶变换的基本概念,阐述了w=2πf的关系,并探讨了从傅里叶级数(FS)到傅里叶变换(FT)的转换过程。
摘要由CSDN通过智能技术生成

Fourier Series

x ( t ) = ∑ n = − ∞ n = + ∞ X [ n ] e j n w t , X [ n ] = ∫ τ τ + T x ( t ) e − j n w t d t ∫ τ τ + T e j n w t e − j n w t d t x(t)= \sum_{n=-\infty}^{n=+\infty} X[n] e^{jnwt} , \quad X[n]= \frac{ \displaystyle \int_{\tau}^{\tau + T} x(t) e^{-jnwt} dt }{ \displaystyle \int_{\tau}^{\tau + T} e^{jnwt} e^{-jnwt} dt } x(t)=n=n=+X[n]ejnwt,X[n]=ττ+Tejnwtejnwtdtττ+Tx(t)ejnwtdt

x ( t ) = ∑ n = − ∞ n = + ∞ ∫ τ 0 τ 0 + T x ( τ ) e − j n w τ d τ ∫ τ 0 τ 0 + T e j n w τ e − j n w τ d τ e j n w t , X [ n ] = ∫ τ τ + T ( ∑ m = − ∞ m = + ∞ X [ m ] e j m w t ) e − j n w t d t ∫ τ τ + T e j n w t e − j n w t d t x(t)= \sum_{n=-\infty}^{n=+\infty} \frac{ \displaystyle \int_{\tau_0}^{\tau_0 + T} x(\tau) e^{-j n w \tau} d \tau }{ \displaystyle \int_{\tau_0}^{\tau_0 + T} e^{j n w \tau} e^{- j n w \tau} d \tau } e^{jnwt} , \quad X[n]= \frac{ \displaystyle \int_{\tau}^{\tau + T} \left( \sum_{m=-\infty}^{m=+\infty} X[m] e^{jmwt} \right) e^{-jnwt} dt }{ \displaystyle \int_{\tau}^{\tau + T} e^{jnwt} e^{-jnwt} dt } x(t)=n=n=+τ0τ0+Tejnwτe

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值