逼近与机械求积题目选做

本文探讨了如何使用数学方法寻找函数在特定区间上的最佳一次逼近多项式,通过实例展示了如何求解误差并进行比较。此外,文章还涉及了在不同基函数上的一致平方逼近问题,以及在多项式和指数函数拟合中的最小二乘法应用。最后,文中详述了梯形公式和Simpson公式在数值积分中的应用,以及误差控制策略。
摘要由CSDN通过智能技术生成
  1. 求 f(x) = sin(x) 在 [0,π/2] 上的最佳一次逼近多项式,并估计误差.

背景知识
p(x) 是 f(x) ∈ C[a,b] 的 n 次最佳一致逼近多项式的充要条件是 p(x) 在 [a,b] 上至少有 n+2 个轮流为"正","负"的偏差点. 这样的点组称为Chebyshev交错点组.

本题中
f(x) = sin(x) 在 [0,π/2] 上存在无限高阶导数, 而且是单调递增的凹函数.

设 p(x) = ax+b, 则 δ(x) = f(x)-p(x) = sin(x)-ax-b 也是凹函数.
设Chebyshev交错点组为 p < q < r, 则 p=0, δ’(q)=0, r=π/2.
即 -b = -[sin(q)-aq-b] = 1-aπ/2-b, cos(q)-a = 0.
解得

a = 2 π a = \frac 2 \pi a=π2, b = π 2 − 4 2 π − 1 π arccos ⁡ 2 π b = \frac{\sqrt{\pi^2 - 4}}{2\pi} - \frac 1 \pi \arccos \frac 2 \pi b=2ππ24 π1arccosπ2.
p ( x ) = 2 π x + π 2 − 4 2 π − 1 π arccos ⁡ 2 π p(x) = \frac 2 \pi x + \frac{\sqrt{\pi^2 - 4}}{2\pi} - \frac 1 \pi \arccos \frac 2 \pi p(x)=π2x+2ππ24 π1arccosπ2
max ⁡ ∣ f ( x ) − p ( x ) ∣ = ∣ f ( 0 ) − p ( 0 ) ∣ = ∣ b ∣ ≈ 0.1053 \max |f(x) - p(x)| = |f(0) - p(0)| = |b| \approx 0.1053 maxf(x)p(x)=f(0)p(0)=b0.1053

sqrt(pi.^2-4)./(2.*pi) - acos(2./pi)./pi
from math import sqrt, acos, pi
print(sqrt(pi**2-4)/(2*pi) - acos(2/pi)/pi)
  1. 设 φ1=span{1,x}, φ2=span{x100,101}, 分别在φ1,φ2上求一元素, 使其为x2∈C[0,1]的最佳平方逼近, 并比较其结果.

背景知识
对于基函数 e1(x), … , ed(x), f(x)∈C[a,b] 的最佳平方逼近 g(x) = k1 e1(x) + … + kd ed(x), 满足法方程:
(e1, f) = (e1, g) = (e1, Σ kj ej) = Σ kj (e1, ej)
  ⋮
(ei, f) = (ei, g) = (ei, Σ kj ej) = Σ kj (ei, ej)
  ⋮
(ed, f) = (ed, g) = (ed, Σ kj ej) = Σ kj (ed, ej)

φ1上

1/3 = 1 k1 + 1/2 k2
1/4 = 1/2 k1 + 1/3 k2

k1 = -1/6, k2 = 1

g ( x ) = − 1 6 + x g(x) = - \frac 1 6 + x g(x)=61+x
∫ 0 1 ( x 2 − g ( x ) ) 2 d x = 0.0056 \int\limits_0^1 (x^2-g(x))^2 \mathrm{d} x = 0.0056 01(x2g(x))2dx=0.0056

φ2上

1/103 = 1/201 k1 + 1/202 k2
1/104 = 1/202 k1 + 1/203 k2

k1 = 2009799/5356, k2 = -1004647/2678
k1 ≈ 375.2425, k2 ≈ -375.1482

g ( x ) = ( 375.2425 − 375.1482 x ) x 100 g(x) = (375.2425 - 375.1482 x) x^{100} g(x)=(375.2425375.1482x)x100
∫ 0 1 ( x 2 − g ( x ) ) 2 d x = 0.1641 \int\limits_0^1 (x^2-g(x))^2 \mathrm{d} x = 0.1641 01(x2g(x))2dx=0.1641

A=[1 1/2;1/2 1/3]; B=[1/3;1/4];
A=sym(A); B=sym(B);
A\B

A=[1/201 1/202;1/202 1/203]; B=[1/103;1/104];
A=sym(A); B=sym(B);
A\B
double(A\B)

f = @(x) x.^2;
g1 = @(x) -1/6 + x;
g2 = @(x) (375.2425 - 375.1482.*x) .* x.^100;
h1 = @(x) (f(x) - g1(x)).^2;
h2 = @(x) (f(x) - g2(x)).^2;

integral(h1,0,1)
integral(h2,0,1)
  1. 将 f(x) = sin(x/2) 在 [-1,1] 上按Legendre多项式及Chebyshev多项式展开, 求三次最佳平方逼近多项式并画出误差图形, 再计算均方误差.

背景知识
Legendre多项式: 当区间为[-1,1], 权函数ρ(x)=1时, 由{1,x,x2, … ,xn}正交化得到的多项式 L n ( x ) = 1 2 n n ! d n d x n ( x 2 − 1 ) n L_n(x) = \frac{1}{2^n n!} \frac{\mathrm{d}^n}{\mathrm{d} x^n} (x^2-1)^n Ln(x)=2nn!1dxndn(x21)n.

L 0 ( x ) = 1 L_0(x) = 1 L0(x)=1
L 1 ( x ) = x L_1(x) = x L1(x)=x
L 2 ( x ) = 3 x 2 − 1 2 L_2(x) = \frac{3x^2-1}{2} L2(x)=23x21
L 3 ( x ) = 5 x 3 − 3 x 2 L_3(x) = \frac{5x^3-3x}{2} L3(x)=25x33x

k 0 = ( f , L 0 ) ( L 0 , L 0 ) = 0 k_0 = \frac{(f,L_0)}{(L_0,L_0)} = 0 k0=(L0,L0)(f,L0)=0
k 1 = ( f , L 1 ) ( L 1 , L 1 ) = 12 sin ⁡ ( 1 2 ) − 6 cos ⁡ ( 1 2 ) ≈ 0.4876 k_1 = \frac{(f,L_1)}{(L_1,L_1)} = 12 \sin \left(\frac{1}{2}\right) - 6 \cos \left(\frac{1}{2}\right) \approx 0.4876 k1=(L1,L1)(f,L1)=12sin(21)6cos(21)0.4876
k 2 = ( f , L 2 ) ( L 2 , L 2 ) = 0 k_2 = \frac{(f,L_2)}{(L_2,L_2)} = 0 k2=(L2,L2)(f,L2)=0
k 3 = ( f , L 3 ) ( L 3 , L 3 ) = 826 cos ⁡ ( 1 2 ) − 1512 sin ⁡ ( 1 2 ) ≈ − 0.0082 k_3 = \frac{(f,L_3)}{(L_3,L_3)} = 826 \cos \left(\frac{1}{2}\right) - 1512 \sin \left(\frac{1}{2}\right) \approx -0.0082 k3=(L3,L3)(f,L3)=826cos(21)1512sin(21)0.0082

g ( x ) = ∑ 0 3 k i L i ( x ) = ( 2065 cos ⁡ ( 1 2 ) − 3780 sin ⁡ ( 1 2 ) ) x 3 + ( 2280 sin ⁡ ( 1 2 ) − 1245 cos ⁡ ( 1 2 ) ) x ≈ 0.5 x − 0.02 x 3 g(x) = \sum\limits_0^3 k_i L_i(x) = {\left(2065 \cos \left(\frac{1}{2}\right) - 3780 \sin \left(\frac{1}{2}\right)\right)} x^3 + {\left(2280 \sin \left(\frac{1}{2}\right) - 1245 \cos \left(\frac{1}{2}\right)\right)} x \approx 0.5 x - 0.02 x^3 g(x)=03kiLi(x)=(2065cos(21)3780sin(21))x3+(2280sin(21)1245cos(21))x0.5x0.02x3

∥ δ ∥ = ∫ − 1 1 ( f ( x ) − g ( x ) ) 2 d x = ( f , f ) − ( f , g ) = 229160 cos ⁡ ( 1 ) + 356879 sin ⁡ ( 1 ) − 424119 ≈ 1.3966 × 1 0 − 5 \| \delta \| = \sqrt{\int\limits_{-1}^{1} (f(x)-g(x))^2 \mathrm{d} x} = \sqrt{(f,f)-(f,g)} = \sqrt{229160 \cos \left(1\right) + 356879 \sin \left(1\right)-424119} \approx 1.3966 \times 10^{-5} δ=11(f(x)g(x))2dx =(f,f)(f,g) =229160cos(1)+356879sin(1)424119 1.3966×105

请添加图片描述

x = sym('x');
f = sin(x/2);

L0 = sym_legendre(0);
L1 = sym_legendre(1);
L2 = sym_legendre(2);
L3 = sym_legendre(3);

L0 = collect(L0,x)
L1 = collect(L1,x)
L2 = collect(L2,x)
L3 = collect(L3,x)

k0 = int(L0*f,-1,1) / int(L0*L0,-1,1)
k1 = int(L1*f,-1,1) / int(L1*L1,-1,1)
k2 = int(L2*f,-1,1) / int(L2*L2,-1,1)
k3 = int(L3*f,-1,1) / int(L3*L3,-1,1)

double(k1)
double(k3)

g = k0.*L0 + k1.*L1 + k2.*L2 + k3.*L3;
g = collect(g, x)
vpa(g)

fplot(f-g,[-1,1])
title('mean square error')

err2 = sqrt( int((f-g).^2,-1,1) )
double(err2)

err2 = sqrt( int(f.^2,-1,1) - int(f.*g,-1,1) )
double(err2)

function l = sym_legendre(n)
    x = sym('x');
    f = @(x) (x.^2-1).^n;
    l = diff(f(x), n);
    l = l / (factorial(n) .* 2.^n);
end
  1. 用最小二乘法求一个形如 y=a+bx2 的经验公式, 使它数据相拟合, 并求均方误差.
19 25 31 38 44
19.0 32.3 49.0 73.3 97.8

请添加图片描述

观察发现曲线具有凸性, 因此考虑二次多项式和指数函数. 按照题目要求考虑 y=a+bx2.

φ=span{1,x2}

(f,e1) = (e1,e1) k1 + (e1,e2) k2
(f,e2) = (e1,e2) k1 + (e2,e2) k2

271.4 = 5 k1 + 5327 k2
369321.5 = 5327 k1 + 7277699 k2

y ≈ g(x) = 0.9726 + 0.0500 x2

∥ δ ∥ 2 = ∑ i ( Y i − g ( X i ) ) 2 = 0.0150 = 0.1226 \|\delta\|_2 = \sqrt{\sum\limits_i (Y_i - g(X_i))^2} = \sqrt{0.0150} = 0.1226 δ2=i(Yig(Xi))2 =0.0150 =0.1226

X = [ 19   25   31   38   44 ];
Y = [19.0 32.3
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
毕业设计,基于SpringBoot+Vue+MySQL开发的公寓报修管理系统,源码+数据库+毕业论文+视频演示 现代经济快节奏发展以及不断完善升级的信息化技术,让传统数据信息的管理升级为软件存储,归纳,集中处理数据信息的管理方式。本公寓报修管理系统就是在这样的大环境下诞生,其可以帮助管理者在短时间内处理完毕庞大的数据信息,使用这种软件工具可以帮助管理人员提高事务处理效率,达到事半功倍的效果。此公寓报修管理系统利用当下成熟完善的Spring Boot框架,使用跨平台的可开发大型商业网站的Java语言,以及最受欢迎的RDBMS应用软件之一的MySQL数据库进行程序开发。公寓报修管理系统有管理员,住户,维修人员。管理员可以管理住户信息和维修人员信息,可以审核维修人员的请假信息,住户可以申请维修,可以对维修结果评价,维修人员负责住户提交的维修信息,也可以请假。公寓报修管理系统的开发根据操作人员需要设计的界面简洁美观,在功能模块布局上跟同类型网站保持一致,程序在实现基本要求功能时,也为数据信息面临的安全问题提供了一些实用的解决方案。可以说该程序在帮助管理者高效率地处理工作事务的同时,也实现了数据信息的整体化,规范化与自动化。 关键词:公寓报修管理系统;Spring Boot框架;MySQL;自动化;VUE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值