有向概率图模型(bayesian network)的条件独立性

顺序结构

A
C
B

下证 A ⊥ B ∣ C A \bot B | C ABC
p ( A , B , C ) = p ( A ) p ( C ∣ A ) p ( B ∣ C ) p(A,B,C) = p(A) p(C|A) p(B|C) p(A,B,C)=p(A)p(CA)p(BC)
p ( A , B ∣ C ) = p ( A , B , C ) p ( C ) = p ( A , B , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = p ( A ) p ( C ∣ A ) p ( B ∣ C ) ∑ A ′ ∑ B ′ p ( A ′ ) p ( C ∣ A ′ ) p ( B ′ ∣ C ) = p ( A ) p ( C ∣ A ) p ( B ∣ C ) ( ∑ A ′ p ( A ′ ) p ( C ∣ A ′ ) ) ( ∑ B ′ p ( B ′ ∣ C ) ) = p ( A ) p ( C ∣ A ) p ( B ∣ C ) ( ∑ A ′ p ( A ′ ) p ( C ∣ A ′ ) ) p(A,B|C) = \frac{p(A,B,C)}{p(C)} = \frac{p(A,B,C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{p(A) p(C|A) p(B|C)}{\sum\limits_{A'} \sum\limits_{B'} p(A') p(C|A') p(B'|C)} = \frac{p(A) p(C|A) p(B|C)}{\left( \sum\limits_{A'} p(A') p(C|A') \right) \left( \sum\limits_{B'} p(B'|C) \right)} = \frac{p(A) p(C|A) p(B|C)}{\left( \sum\limits_{A'} p(A') p(C|A') \right)} p(A,BC)=p(C)p(A,B,C)=ABp(A,B,C)p(A,B,C)=ABp(A)p(CA)p(BC)p(A)p(CA)p(BC)=(Ap(A)p(CA))(Bp(BC))p(A)p(CA)p(BC)=(Ap(A)p(CA))p(A)p(CA)p(BC)
p ( A ∣ C ) = p ( A , C ) p ( C ) = ∑ B ′ p ( A , B ′ , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = ∑ B ′ p ( A ) p ( C ∣ A ) p ( B ′ ∣ C ) ∑ A ′ ∑ B ′ p ( A ′ ) p ( C ∣ A ′ ) p ( B ′ ∣ C ) = p ( A ) p ( C ∣ A ) ( ∑ B ′ p ( B ′ ∣ C ) ) ( ∑ A ′ p ( A ′ ) p ( C ∣ A ′ ) ) ( ∑ B ′ p ( B ′ ∣ C ) ) = p ( A ) p ( C ∣ A ) ( ∑ A ′ p ( A ′ ) p ( C ∣ A ′ ) ) p(A|C) = \frac{p(A,C)}{p(C)} = \frac{\sum\limits_{B'} p(A,B',C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{\sum\limits_{B'} p(A) p(C|A) p(B'|C)}{\sum\limits_{A'} \sum\limits_{B'} p(A') p(C|A') p(B'|C)} = \frac{p(A) p(C|A) \left( \sum\limits_{B'} p(B'|C) \right)}{\left( \sum\limits_{A'} p(A') p(C|A') \right) \left( \sum\limits_{B'} p(B'|C) \right)} = \frac{p(A) p(C|A)}{\left( \sum\limits_{A'} p(A') p(C|A') \right)} p(AC)=p(C)p(A,C)=ABp(A,B,C)Bp(A,B,C)=ABp(A)p(CA)p(BC)Bp(A)p(CA)p(BC)=(Ap(A)p(CA))(Bp(BC))p(A)p(CA)(Bp(BC))=(Ap(A)p(CA))p(A)p(CA)
p ( B ∣ C ) = p ( B , C ) p ( C ) = ∑ A ′ p ( A ′ , B , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = ∑ A ′ p ( A ′ ) p ( C ∣ A ′ ) p ( B ∣ C ) ∑ A ′ ∑ B ′ p ( A ′ ) p ( C ∣ A ′ ) p ( B ′ ∣ C ) = ( ∑ A ′ p ( A ′ ) p ( C ∣ A ′ ) ) p ( B ∣ C ) ( ∑ A ′ p ( A ′ ) p ( C ∣ A ′ ) ) ( ∑ B ′ p ( B ′ ∣ C ) ) = p ( B ∣ C ) p(B|C) = \frac{p(B,C)}{p(C)} = \frac{\sum\limits_{A'} p(A',B,C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{\sum\limits_{A'} p(A') p(C|A') p(B|C)}{\sum\limits_{A'} \sum\limits_{B'} p(A') p(C|A') p(B'|C)} = \frac{\left( \sum\limits_{A'} p(A') p(C|A') \right) p(B|C)}{\left( \sum\limits_{A'} p(A') p(C|A') \right) \left( \sum\limits_{B'} p(B'|C) \right)} = p(B|C) p(BC)=p(C)p(B,C)=ABp(A,B,C)Ap(A,B,C)=ABp(A)p(CA)p(BC)Ap(A)p(CA)p(BC)=(Ap(A)p(CA))(Bp(BC))(Ap(A)p(CA))p(BC)=p(BC)
p ( A , B ∣ C ) = p ( A ∣ C ) p ( B ∣ C ) p(A,B|C) = p(A|C)p(B|C) p(A,BC)=p(AC)p(BC)恰好成立

B
C
A

下证 B ⊥ A ∣ C B \bot A | C BAC
p ( B , A , C ) = p ( B ) p ( C ∣ B ) p ( A ∣ C ) p(B,A,C) = p(B) p(C|B) p(A|C) p(B,A,C)=p(B)p(CB)p(AC)
p ( B , A ∣ C ) = p ( B , A , C ) p ( C ) = p ( B , A , C ) ∑ B ′ ∑ A ′ p ( B ′ , A ′ , C ) = p ( B ) p ( C ∣ B ) p ( A ∣ C ) ∑ B ′ ∑ A ′ p ( B ′ ) p ( C ∣ B ′ ) p ( A ′ ∣ C ) = p ( B ) p ( C ∣ B ) p ( A ∣ C ) ( ∑ B ′ p ( B ′ ) p ( C ∣ B ′ ) ) ( ∑ A ′ p ( A ′ ∣ C ) ) = p ( B ) p ( C ∣ B ) p ( A ∣ C ) ( ∑ B ′ p ( B ′ ) p ( C ∣ B ′ ) ) p(B,A|C) = \frac{p(B,A,C)}{p(C)} = \frac{p(B,A,C)}{\sum\limits_{B'} \sum\limits_{A'} p(B',A',C)} = \frac{p(B) p(C|B) p(A|C)}{\sum\limits_{B'} \sum\limits_{A'} p(B') p(C|B') p(A'|C)} = \frac{p(B) p(C|B) p(A|C)}{\left( \sum\limits_{B'} p(B') p(C|B') \right) \left( \sum\limits_{A'} p(A'|C) \right)} = \frac{p(B) p(C|B) p(A|C)}{\left( \sum\limits_{B'} p(B') p(C|B') \right)} p(B,AC)=p(C)p(B,A,C)=BAp(B,A,C)p(B,A,C)=BAp(B)p(CB)p(AC)p(B)p(CB)p(AC)=(Bp(B)p(CB))(Ap(AC))p(B)p(CB)p(AC)=(Bp(B)p(CB))p(B)p(CB)p(AC)
p ( B ∣ C ) = p ( B , C ) p ( C ) = ∑ A ′ p ( B , A ′ , C ) ∑ B ′ ∑ A ′ p ( B ′ , A ′ , C ) = ∑ A ′ p ( B ) p ( C ∣ B ) p ( A ′ ∣ C ) ∑ B ′ ∑ A ′ p ( B ′ ) p ( C ∣ B ′ ) p ( A ′ ∣ C ) = p ( B ) p ( C ∣ B ) ( ∑ A ′ p ( A ′ ∣ C ) ) ( ∑ B ′ p ( B ′ ) p ( C ∣ B ′ ) ) ( ∑ A ′ p ( A ′ ∣ C ) ) = p ( B ) p ( C ∣ B ) ( ∑ B ′ p ( B ′ ) p ( C ∣ B ′ ) ) p(B|C) = \frac{p(B,C)}{p(C)} = \frac{\sum\limits_{A'} p(B,A',C)}{\sum\limits_{B'} \sum\limits_{A'} p(B',A',C)} = \frac{\sum\limits_{A'} p(B) p(C|B) p(A'|C)}{\sum\limits_{B'} \sum\limits_{A'} p(B') p(C|B') p(A'|C)} = \frac{p(B) p(C|B) \left( \sum\limits_{A'} p(A'|C) \right)}{\left( \sum\limits_{B'} p(B') p(C|B') \right) \left( \sum\limits_{A'} p(A'|C) \right)} = \frac{p(B) p(C|B)}{\left( \sum\limits_{B'} p(B') p(C|B') \right)} p(BC)=p(C)p(B,C)=BAp(B,A,C)Ap(B,A,C)=BAp(B)p(CB)p(AC)Ap(B)p(CB)p(AC)=(Bp(B)p(CB))(Ap(AC))p(B)p(CB)(Ap(AC))=(Bp(B)p(CB))p(B)p(CB)
p ( A ∣ C ) = p ( A , C ) p ( C ) = ∑ B ′ p ( B ′ , A , C ) ∑ B ′ ∑ A ′ p ( B ′ , A ′ , C ) = ∑ B ′ p ( B ′ ) p ( C ∣ B ′ ) p ( A ∣ C ) ∑ B ′ ∑ A ′ p ( B ′ ) p ( C ∣ B ′ ) p ( A ′ ∣ C ) = ( ∑ B ′ p ( B ′ ) p ( C ∣ B ′ ) ) p ( A ∣ C ) ( ∑ B ′ p ( B ′ ) p ( C ∣ B ′ ) ) ( ∑ A ′ p ( A ′ ∣ C ) ) = p ( A ∣ C ) p(A|C) = \frac{p(A,C)}{p(C)} = \frac{\sum\limits_{B'} p(B',A,C)}{\sum\limits_{B'} \sum\limits_{A'} p(B',A',C)} = \frac{\sum\limits_{B'} p(B') p(C|B') p(A|C)}{\sum\limits_{B'} \sum\limits_{A'} p(B') p(C|B') p(A'|C)} = \frac{\left( \sum\limits_{B'} p(B') p(C|B') \right) p(A|C)}{\left( \sum\limits_{B'} p(B') p(C|B') \right) \left( \sum\limits_{A'} p(A'|C) \right)} = p(A|C) p(AC)=p(C)p(A,C)=BAp(B,A,C)Bp(B,A,C)=BAp(B)p(CB)p(AC)Bp(B)p(CB)p(AC)=(Bp(B)p(CB))(Ap(AC))(Bp(B)p(CB))p(AC)=p(AC)
p ( B , A ∣ C ) = p ( B ∣ C ) p ( A ∣ C ) p(B,A|C) = p(B|C)p(A|C) p(B,AC)=p(BC)p(AC)恰好成立

同父结构

A
B
C

下证 A ⊥ B ∣ C A \bot B | C ABC
p ( A , B , C ) = p ( C ) p ( A ∣ C ) p ( B ∣ C ) p(A,B,C) = p(C) p(A|C) p(B|C) p(A,B,C)=p(C)p(AC)p(BC)

p ( A , B ∣ C ) = p ( A , B , C ) p ( C ) = p ( A , B , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = p ( C ) p ( A ∣ C ) p ( B ∣ C ) ∑ A ′ ∑ B ′ p ( C ) p ( A ′ ∣ C ) p ( B ′ ∣ C ) = p ( C ) p ( A ∣ C ) p ( B ∣ C ) p ( C ) ( ∑ A ′ p ( A ′ ∣ C ) ) ( ∑ B ′ p ( B ′ ∣ C ) ) = p ( A ∣ C ) p ( B ∣ C ) p(A,B|C) = \frac{p(A,B,C)}{p(C)} = \frac{p(A,B,C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{p(C) p(A|C) p(B|C)}{\sum\limits_{A'} \sum\limits_{B'} p(C) p(A'|C) p(B'|C)} = \frac{p(C) p(A|C) p(B|C)}{p(C) \left( \sum\limits_{A'} p(A'|C) \right) \left( \sum\limits_{B'} p(B'|C) \right)} = p(A|C) p(B|C) p(A,BC)=p(C)p(A,B,C)=ABp(A,B,C)p(A,B,C)=ABp(C)p(AC)p(BC)p(C)p(AC)p(BC)=p(C)(Ap(AC))(Bp(BC))p(C)p(AC)p(BC)=p(AC)p(BC)
p ( A ∣ C ) = p ( A , C ) p ( C ) = ∑ B ′ p ( A , B ′ , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = ∑ B ′ p ( C ) p ( A ∣ C ) p ( B ′ ∣ C ) ∑ A ′ ∑ B ′ p ( C ) p ( A ′ ∣ C ) p ( B ′ ∣ C ) = p ( C ) p ( A ∣ C ) ( ∑ B ′ p ( B ′ ∣ C ) ) p ( C ) ( ∑ A ′ p ( A ′ ∣ C ) ) ( ∑ B ′ p ( B ′ ∣ C ) ) = p ( A ∣ C ) p(A|C) = \frac{p(A,C)}{p(C)} = \frac{\sum\limits_{B'} p(A,B',C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{\sum\limits_{B'} p(C) p(A|C) p(B'|C)}{\sum\limits_{A'} \sum\limits_{B'} p(C) p(A'|C) p(B'|C)} = \frac{p(C) p(A|C) \left( \sum\limits_{B'} p(B'|C) \right)}{p(C) \left( \sum\limits_{A'} p(A'|C) \right) \left( \sum\limits_{B'} p(B'|C) \right)} = p(A|C) p(AC)=p(C)p(A,C)=ABp(A,B,C)Bp(A,B,C)=ABp(C)p(AC)p(BC)Bp(C)p(AC)p(BC)=p(C)(Ap(AC))(Bp(BC))p(C)p(AC)(Bp(BC))=p(AC)
p ( B ∣ C ) = p ( B , C ) p ( C ) = ∑ A ′ p ( A ′ , B , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = ∑ A ′ p ( C ) p ( A ′ ∣ C ) p ( B ∣ C ) ∑ A ′ ∑ B ′ p ( C ) p ( A ′ ∣ C ) p ( B ′ ∣ C ) = p ( C ) p ( B ∣ C ) ( ∑ A ′ p ( A ′ ∣ C ) ) p ( C ) ( ∑ A ′ p ( A ′ ∣ C ) ) ( ∑ B ′ p ( B ′ ∣ C ) ) = p ( B ∣ C ) p(B|C) = \frac{p(B,C)}{p(C)} = \frac{\sum\limits_{A'} p(A',B,C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{\sum\limits_{A'} p(C) p(A'|C) p(B|C)}{\sum\limits_{A'} \sum\limits_{B'} p(C) p(A'|C) p(B'|C)} = \frac{p(C) p(B|C) \left( \sum\limits_{A'} p(A'|C) \right)}{p(C) \left( \sum\limits_{A'} p(A'|C) \right) \left( \sum\limits_{B'} p(B'|C) \right)} = p(B|C) p(BC)=p(C)p(B,C)=ABp(A,B,C)Ap(A,B,C)=ABp(C)p(AC)p(BC)Ap(C)p(AC)p(BC)=p(C)(Ap(AC))(Bp(BC))p(C)p(BC)(Ap(AC))=p(BC)
p ( A , B ∣ C ) = p ( A ∣ C ) p ( B ∣ C ) p(A,B|C) = p(A|C)p(B|C) p(A,BC)=p(AC)p(BC)恰好成立

V形结构

A
B
C

下证 A ⊥ B A \bot B AB
p ( A , B , C ) = p ( A ) p ( B ) p ( C ∣ A , B ) p(A,B,C) = p(A) p(B) p(C|A,B) p(A,B,C)=p(A)p(B)p(CA,B)
p ( A , B ) = ∑ C ′ p ( A , B , C ′ ) = ∑ C ′ p ( A ) p ( B ) p ( C ′ ∣ A , B ) = p ( A ) p ( B ) ( ∑ C ′ p ( C ′ ∣ A , B ) ) = p ( A ) p ( B ) p(A,B) = \sum\limits_{C'} p(A,B,C') = \sum\limits_{C'} p(A) p(B) p(C'|A,B) = p(A) p(B) \left( \sum\limits_{C'} p(C'|A,B) \right) = p(A) p(B) p(A,B)=Cp(A,B,C)=Cp(A)p(B)p(CA,B)=p(A)p(B)(Cp(CA,B))=p(A)p(B)
p ( A ) = ∑ B ′ ∑ C ′ p ( A , B ′ , C ′ ) = ∑ B ′ ∑ C ′ p ( A ) p ( B ′ ) p ( C ′ ∣ A , B ′ ) = p ( A ) [ ∑ B ′ p ( B ′ ) ( ∑ C ′ p ( C ′ ∣ A , B ′ ) ) ] = p ( A ) p(A) = \sum\limits_{B'} \sum\limits_{C'} p(A,B',C') = \sum\limits_{B'} \sum\limits_{C'} p(A) p(B') p(C'|A,B') = p(A) \left[ \sum\limits_{B'} p(B') \left( \sum\limits_{C'} p(C'|A,B') \right) \right] = p(A) p(A)=BCp(A,B,C)=BCp(A)p(B)p(CA,B)=p(A)[Bp(B)(Cp(CA,B))]=p(A)
p ( B ) = ∑ A ′ ∑ C ′ p ( A ′ , B , C ′ ) = ∑ A ′ ∑ C ′ p ( A ′ ) p ( B ) p ( C ′ ∣ A ′ , B ) = p ( B ) [ ∑ A ′ p ( A ′ ) ( ∑ C ′ p ( C ′ ∣ A ′ , B ) ) ] = p ( B ) p(B) = \sum\limits_{A'} \sum\limits_{C'} p(A',B,C') = \sum\limits_{A'} \sum\limits_{C'} p(A') p(B) p(C'|A',B) = p(B) \left[ \sum\limits_{A'} p(A') \left( \sum\limits_{C'} p(C'|A',B) \right) \right] = p(B) p(B)=ACp(A,B,C)=ACp(A)p(B)p(CA,B)=p(B)[Ap(A)(Cp(CA,B))]=p(B)
p ( A , B ) = p ( A ) p ( B ) p(A,B) = p(A)p(B) p(A,B)=p(A)p(B)恰好成立

下证 A ̸  ⁣ ⊥ B ∣ C A \not\!\bot B | C ABC
p ( A , B , C ) = p ( A ) p ( B ) p ( C ∣ A , B ) p(A,B,C) = p(A) p(B) p(C|A,B) p(A,B,C)=p(A)p(B)p(CA,B)
p ( A , B ∣ C ) = p ( A , B , C ) p ( C ) = p ( A , B , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = p ( A ) p ( B ) p ( C ∣ A , B ) ∑ A ′ ∑ B ′ p ( A ′ ) p ( B ′ ) p ( C ∣ A ′ , B ′ ) p(A,B|C) = \frac{p(A,B,C)}{p(C)} = \frac{p(A,B,C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{p(A) p(B) p(C|A,B)}{\sum\limits_{A'} \sum\limits_{B'} p(A') p(B') p(C|A',B')} p(A,BC)=p(C)p(A,B,C)=ABp(A,B,C)p(A,B,C)=ABp(A)p(B)p(CA,B)p(A)p(B)p(CA,B)
p ( A ∣ C ) = p ( A , C ) p ( C ) = ∑ B ′ p ( A , B ′ , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = ∑ B ′ p ( A ) p ( B ′ ) p ( C ∣ A , B ′ ) ∑ A ′ ∑ B ′ p ( A ′ ) p ( B ′ ) p ( C ∣ A ′ , B ′ ) = p ( A ) ∑ B ′ p ( B ′ ) p ( C ∣ A , B ′ ) ∑ A ′ ∑ B ′ p ( A ′ ) p ( B ′ ) p ( C ∣ A ′ , B ′ ) p(A|C) = \frac{p(A,C)}{p(C)} = \frac{\sum\limits_{B'} p(A,B',C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{\sum\limits_{B'} p(A) p(B') p(C|A,B')}{\sum\limits_{A'} \sum\limits_{B'} p(A') p(B') p(C|A',B')} = \frac{p(A) \sum\limits_{B'} p(B') p(C|A,B')}{\sum\limits_{A'} \sum\limits_{B'} p(A') p(B') p(C|A',B')} p(AC)=p(C)p(A,C)=ABp(A,B,C)Bp(A,B,C)=ABp(A)p(B)p(CA,B)Bp(A)p(B)p(CA,B)=ABp(A)p(B)p(CA,B)p(A)Bp(B)p(CA,B)
p ( B ∣ C ) = p ( B , C ) p ( C ) = ∑ A ′ p ( A ′ , B , C ) ∑ A ′ ∑ B ′ p ( A ′ , B ′ , C ) = ∑ A ′ p ( A ′ ) p ( B ) p ( C ∣ A ′ , B ) ∑ A ′ ∑ B ′ p ( A ′ ) p ( B ′ ) p ( C ∣ A ′ , B ′ ) = p ( B ) ∑ A ′ p ( A ′ ) p ( C ∣ A ′ , B ) ∑ A ′ ∑ B ′ p ( A ′ ) p ( B ′ ) p ( C ∣ A ′ , B ′ ) p(B|C) = \frac{p(B,C)}{p(C)} = \frac{\sum\limits_{A'} p(A',B,C)}{\sum\limits_{A'} \sum\limits_{B'} p(A',B',C)} = \frac{\sum\limits_{A'} p(A') p(B) p(C|A',B)}{\sum\limits_{A'} \sum\limits_{B'} p(A') p(B') p(C|A',B')} = \frac{p(B) \sum\limits_{A'} p(A') p(C|A',B)}{\sum\limits_{A'} \sum\limits_{B'} p(A') p(B') p(C|A',B')} p(BC)=p(C)p(B,C)=ABp(A,B,C)Ap(A,B,C)=ABp(A)p(B)p(CA,B)Ap(A)p(B)p(CA,B)=ABp(A)p(B)p(CA,B)p(B)Ap(A)p(CA,B)
p ( A , B ∣ C ) = p ( A ∣ C ) p ( B ∣ C ) p(A,B|C) = p(A|C)p(B|C) p(A,BC)=p(AC)p(BC)可能成立, 也可能不成立, no guarantee.

反例

A代表𝐂𝐍’s realty market上涨的概率

A=0A=1
0.50.5

B代表𝐔𝐒’s stock market上涨的概率

B=0B=1
0.50.5

C代表投资组合盈利的概率

A=0 B=0A=0 B=1A=1 B=0A=1 B=1
C=0,C=1C=0,C=1C=0,C=1C=0,C=1
1.0,0.01.0,0.01.0,0.00.0,1.0

这个例子的现实意义是, 中美金融市场满足有效市场假设, 这个投资组合是风险对冲的, 盈利当且仅当𝐂𝐍’s realty market和𝐔𝐒’s stock market同时上涨.

注意p(A=1,B=1|C=0) = 0, 即这个投资组合不盈利时𝐂𝐍’s realty market和𝐔𝐒’s stock market不可能同时上涨.
但是p(A=1|C=0) > 0, p(B=1|C=0) > 0, 即这个投资组合不盈利时𝐂𝐍’s realty market可能上涨(但是此时𝐔𝐒’s stock market会跌), 这个投资组合不盈利时𝐔𝐒’s stock market可能上涨(但是此时𝐂𝐍’s realty market会跌).
这意味着, 这个投资组合不盈利时, 𝐂𝐍’s realty market和𝐔𝐒’s stock market不独立.
有趣的是, 这个投资组合盈利时, 𝐂𝐍’s realty market和𝐔𝐒’s stock market又独立了.
这就是no guarantee的含义.

上述例子使用0,1这种极端值是为了方便直观理解.
实际上, 将0全部替换为 ε \varepsilon ε, 将1全部替换为 1 − ε 1-\varepsilon 1ε, 上述例子仍然成立, 只是不够直观.

对于 ε > 0 \varepsilon>0 ε>0的情形, 我们不妨这样思考, 随着 ε → 0 \varepsilon \to 0 ε0, p(A,B|C=0)趋向于不独立, 而p(A,B|C=1)趋向于独立.

例如

A=0A=1
0.50.5
B=0B=1
0.50.5
A=0 B=0A=0 B=1A=1 B=0A=1 B=1
C=0,C=1C=0,C=1C=0,C=1C=0,C=1
0.9,0.10.9,0.10.9,0.10.1,0.9
from itertools import product

A = [.5, .5,]
B = [.5, .5,]
C_AB = {
  (0,0,) : [1., 0.,],
  (0,1,) : [1., 0.,],
  (1,0,) : [1., 0.,],
  (1,1,) : [0., 1.,],
}

def ABC(a,b,c):
    Pa = A[a]
    Pb = A[b]
    Pc_ab = C_AB[a,b][c]
    return Pa * Pb * Pc_ab

def AB_C(a,b,c):
    Pabc = ABC(a,b,c)
    Pc = 0.
    for a,b, in product(range(2), range(2),):
        Pc += ABC(a,b,c)
    return Pabc / Pc

def A_C(a,c):
    Pac = 0.
    for b in range(2):
        Pac += ABC(a,b,c)
    Pc = 0.
    for a,b, in product(range(2), range(2),):
        Pc += ABC(a,b,c)
    return Pac / Pc

def B_C(b,c):
    Pbc = 0.
    for a in range(2):
        Pbc += ABC(a,b,c)
    Pc = 0.
    for a,b, in product(range(2), range(2),):
        Pc += ABC(a,b,c)
    return Pbc / Pc

if __name__ == '__main__':
    for c in range(2):
        print('='*50)
        for a,b, in product(range(2), range(2),):
            print('- '*25)
            print(f'p(A={a}|C={c}) p(B={b}|C={c}) = {A_C(a,c) * B_C(b,c):.4f}'
                + f' # = {A_C(a,c):.4f} x {B_C(b,c):.4f}')
            print(f'p(A={a},B={b}|C={c})        = {AB_C(a,b,c):.4f}')
#
==================================================
- - - - - - - - - - - - - - - - - - - - - - - - -
p(A=0|C=0) p(B=0|C=0) = 0.4444 # = 0.6667 x 0.6667
p(A=0,B=0|C=0)        = 0.3333
- - - - - - - - - - - - - - - - - - - - - - - - -
p(A=0|C=0) p(B=1|C=0) = 0.2222 # = 0.6667 x 0.3333
p(A=0,B=1|C=0)        = 0.3333
- - - - - - - - - - - - - - - - - - - - - - - - -
p(A=1|C=0) p(B=0|C=0) = 0.2222 # = 0.3333 x 0.6667
p(A=1,B=0|C=0)        = 0.3333
- - - - - - - - - - - - - - - - - - - - - - - - -
p(A=1|C=0) p(B=1|C=0) = 0.1111 # = 0.3333 x 0.3333
p(A=1,B=1|C=0)        = 0.0000
==================================================
- - - - - - - - - - - - - - - - - - - - - - - - -
p(A=0|C=1) p(B=0|C=1) = 0.0000 # = 0.0000 x 0.0000
p(A=0,B=0|C=1)        = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - -
p(A=0|C=1) p(B=1|C=1) = 0.0000 # = 0.0000 x 1.0000
p(A=0,B=1|C=1)        = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - -
p(A=1|C=1) p(B=0|C=1) = 0.0000 # = 1.0000 x 0.0000
p(A=1,B=0|C=1)        = 0.0000
- - - - - - - - - - - - - - - - - - - - - - - - -
p(A=1|C=1) p(B=1|C=1) = 1.0000 # = 1.0000 x 1.0000
p(A=1,B=1|C=1)        = 1.0000

V形子结构

A
B
C
D

A代表𝐂𝐍’s realty market上涨的概率

A=0A=1
0.50.5

B代表𝐔𝐒’s stock market上涨的概率

B=0B=1
0.50.5

C代表投资组合盈利的概率

A=0 B=0A=0 B=1A=1 B=0A=1 B=1
C=0,C=1C=0,C=1C=0,C=1C=0,C=1
1.0,0.01.0,0.01.0,0.00.0,1.0

D代表操作该投资组合的交易员加薪的概率

C=0C=1
D=0,D=1D=0,D=1
1.0,0.00.0,1.0

这个极端的例子中, C恒等于D, D观测到了意味着C也被完全观测到了.
由上一问我们知道, 一旦C被观测到为0, A,B之间将不再独立.
因此, 一旦D被观测到为0, A,B之间将不再独立.

上述例子使用0,1这种极端值是为了方便直观理解.
实际上, 将0全部替换为 ε \varepsilon ε, 将1全部替换为 1 − ε 1-\varepsilon 1ε, 上述例子仍然成立, 只是不够直观.

对于 ε > 0 \varepsilon>0 ε>0的情形, 我们不妨这样思考, 随着 ε → 0 \varepsilon \to 0 ε0, p(A,B|D=0)趋向于不独立, 而p(A,B|D=1)趋向于独立.

例如

A=0A=1
0.50.5
B=0B=1
0.50.5
A=0 B=0A=0 B=1A=1 B=0A=1 B=1
C=0,C=1C=0,C=1C=0,C=1C=0,C=1
0.9,0.10.9,0.10.9,0.10.1,0.9
C=0C=1
D=0,D=1D=0,D=1
0.9,0.10.1,0.9
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值