使用Keras搭建神经网络(Keras是基于TensorFlow的一个架构)(tf.keras是Tensorflow的API)

使用Keras搭建神经网络(Keras是基于TensorFlow的一个架构)(tf.keras是Tensorflow的API)

神经网络搭建八股

第一步,导入相关依赖

第二步,告知要喂入网络的训练集和测试集是什么,也就是要指定训练集的输入特征x_train和训练集的标签y_train,还可以指定测试集的输入特征x_test和测试集的标签y_test

第三步,在Sequential()中搭建网络结构,逐层描述每层网络,相当于走了一遍前向传播

第四步,在compile配置训练方法,告知训练时选择哪种优化器,选择哪种损失函数,选择哪种评测指标

第五步,在fit中执行训练过程,告知训练集和测试集的输入特征和标签,告知每个batch是多少,告知要迭代多少次数据集

第六步,用summary()打印出网络的结构和参数统计

###########################################################################

Sequential()可以认为是个容器,内部封装了一个神经网络结构

拉直层:这一层不含计算,只是形状转换,把输入特征拉直变成一维数组

全连接层:告知神经元个数,激活函数,正则化方式

卷积层:

告知训练时选择的优化器,损失函数,评测指标 

在设置损失函数loss时,tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False)

from_logits:有些神经网络的输出是经过softmax等函数的概率分布,有些则不经概率分布直接输出。因此from_logits代表询问是否是原始输出,也就是没有经过概率分布的输出,

如果输出前经过了softmax等函数的概率分布,则from_logits=False

如果输出没有经过概率分布直接输出,则这里是True

后续例子都是以数值形式给出标签,以概率分布形式表示输出,所以应该选择sparse_categorical_accuracy作为评测指标
#############################################################################

对于二分类问题,评价指标可以用 binary_accuracy,就是最直观上讲的准确率。
当面对多分类或者多标签的任务时,评价度量可能会用到这两个 categorical_accuracy和 sparse_categorical_accuracy

举个栗子
如果有四个类,该样本属于第三类,那么在 categorical_accuracy 中 y_true =(0,0, 1, 0) , 而在 sparse_categorical_accuracy中 y_true = 2 (0-based计数)。但是,y_pred是一样的,均为softmax输出的vector,比如 y_pred = (0.02, 0.05, 0.83, 0.1),于是
 

y_true = (0, 0, 1, 0)
y_pred = (0.02, 0.05, 0.83, 0.1)
acc = categorical_accuracy(y_true, y_pred)

y_true = 2

y_pred = (0.02, 0.05, 0.83, 0.1)

acc = sparse_categorical_accuracy(y_true, y_pred)

#############################################################################

告知训练集的输入特征,告知训练集的标签,每次喂入神经网络的样本数batch_size数值,要迭代多少次数据集epochs总次数

validation_data:告知测试集的输入特征和测试集的标签
validation_split(两者二选一): 告知从训练集中划分多少比例数据给测试集

validation_freq:告知每迭代多少次数据集,使用测试集验证一下结果

 用summary()打印出网络的结构和参数统计

iris代码复现

import tensorflow as tf
from sklearn import datasets
import numpy as np

# train test 标记训练集与测试集,此处应有的测试集分类放在了fit中
x_train = datasets.load_iris().data
y_train = datasets.load_iris().target

# 实现数据集乱序
np.random.seed(116)
np.random.shuffle(x_train)
np.random.seed(116)
np.random.shuffle(y_train)
tf.random.set_seed(116)

# models sequential 设置神经元个数 激活函数 正则化方式
model = tf.keras.models.Sequential([
    tf.keras.layers.Dense(3, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2())
])

# model compile 设置优化器(随机梯度下降法和学习率0.1),loss为交叉熵损失函数,评测指标 sparse_categorical_accuracy
model.compile(optimizer=tf.keras.optimizers.SGD(lr=0.1),
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

# model fit batch尺寸 500次数据集循环 validation_split:告知从训练集中划分多少比例数据给测试集 validation_freq:告知每迭代多少次数据集,使用测试集验证一下结果
model.fit(x_train, y_train, batch_size=32, epochs=500, validation_split=0.2, validation_freq=20)

model.summary()

############################################################################

这个地方的输出参数看不懂 

loss损失率是0.3486,sparse_categorical_accuracy准确率是0.9583

############################################################################

使用sequential可以搭建出上层输出就是下层输入的顺序网络结构,但不能写出一些带有跳连的非顺序网络结构,这个时候我们可以选用类Class搭建神经网络结构

 

 

这个地方类似于java中的继承 继承了Python中的Model类

init函数搭建神经网络,call函数 调用实现神经网络前向传播


MNIST数据集

可以使用load_data()直接从mnist中读取MNIST数据集 

 

用Sequential实现手写数字识别训练仅用18行代码 

import tensorflow as tf

mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 对输入网络的输入特征进行归一化,使原本0~255的灰度值变为0~1之间的数值
x_train, x_test = x_train / 255.0, x_test / 255.0

# 用Sequential搭建神经网络,先把输入特征拉直为一维数组,也就是拉直为748个数值
# 定义第一个神经元128个 用relu激活函数
# 定义第二个神经元10个 用softmax使输出符合概率分布
model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

# model compile 设置优化adam,loss为交叉熵损失函数,评测指标 sparse_categorical_accuracy
# 注意:如果输出不是softmax不满足概率分布,则这里是true
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()


Fashion数据集

import tensorflow as tf

fashion = tf.keras.datasets.fashion_mnist
(x_train, y_train),(x_test, y_test) = fashion.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation='relu'),
    tf.keras.layers.Dense(10, activation='softmax')
])

model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
              metrics=['sparse_categorical_accuracy'])

model.fit(x_train, y_train, batch_size=32, epochs=5, validation_data=(x_test, y_test), validation_freq=1)
model.summary()

  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
波士顿房价数据集是由1978年美国波士顿与周边地区房屋的信息所构成的数据集。在这个数据集中,我们可以得到包括犯罪率、平均房间数、房屋离工作区中心的距离以及社区中收入中位数等以及14个特征。这些特征将用来预测所对应的房屋价格中位数。 当我们要用神经网络去处理这些数据时,我们需要将数据进行预处理来消除数据的差异性,有可能会进行归一化操作。然后使用 tf.keras 库来搭建神经网络模型,利用包含输入数据和输出数据的训练集对模型进行训练和优化。最终目标是使得神经网络模型能够预测新输入数据的输出数据。 使用 tf.keras 搭建神经网络模型时,我们需要选择合适的激活函数、损失函数以及优化器。常用的优化器包括Adam、SGD、Adadelta等方法。我们需要根据实际情况来选择合适的优化器。常用的激活函数包括ReLU、Sigmoid、Tanh等方法。损失函数的选择也比较关键,常用的损失函数有均方误差、交叉熵等方法。我们可以通过比较模型对不同损失函数的结果来选择最优的损失函数。 在模型训练过程中,我们可以通过监测模型的性能来对模型进行调整,监测指标包括训练集和测试集的准确度、损失等参数。当我们发现模型出现过拟合或者欠拟合等问题时,可以通过增加训练数据、减小网络规模、增加正则化项等方法来改善模型的性能。 总结来说,在使用 tf.keras搭建神经网络模型时,需要经过以下步骤:数据预处理、选择适当的激活函数、损失函数和优化器、模型训练参数调整等等。在实际应用中,我们可能需要通过不断尝试调整模型,从而得到最优的模型参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值