7-初识Keras:轻松完成神经网络模型搭建

声明

本文章基于哔哩哔哩付费课程《小白也能听懂的人工智能原理》仅供学习记录、分享,严禁他用!!如有侵权,请联系删除

目录

一、知识引入

(一)矩阵和向量

1、向量

2、矩阵

(二)Keras框架

1、Keras实现一个神经元

2、存在的问题

二、编程实验1--向量和矩阵构建神经元

(一)编写预测模型-向量版

(二)前向传播--向量版

(三)反向传播--向量版

 (四)绘图

三、编程实验2--使用Keras实现学过的神经网络模型

(一)输入数据特征维度为1,仅使用激活函数激活,区间0,1表示有毒/无毒概率的数据集

1、使用Keras搭建神经网络

2、模型训练

3、模型预测

4、绘图

(二)加入隐藏层,使得函数富有多样的单调性

1、修改为2个神经元(隐藏层),并添加输出层神经元

2、调整学习率

3、绘图

(三)两个特征维度的输入数据,简单的线性可分情况

1、指定输入数据维度2,单神经元

2、绘制三维空间图形 

(四)两个特征维度的输入数据,加入隐藏层,扭曲预测曲面和分割线

1、指定输入数据维度2,修改为2个神经元(隐藏层),并添加输出层神经元

2、绘制三维空间图形


一、知识引入

(一)矩阵和向量

1、向量

        用三元一次函数(z = w1x1 + w2x2 + w3x3 + b)举例,用一个向量把函数的自变量放入其中、再把权重系数放入另一个向量中、偏置项系数b也放入一个向量中。

        定义向量的转置(T)

        定义向量间的乘法,点乘:对应元素相乘再相加

        加上偏置向量b

        对于一个1000元函数来说:

        向量元素的数量,也叫做维度。

        输入、权重参数、偏置项都看作是向量。

2、矩阵

        如果输入数据送入的是一组函数进行运算,比如加入隐藏层神经元的神经网络。

        每一个函数都有一个权重系数向量和偏置系数向量

        将函数的权重系数向量放在一起、偏置向量也放在一起,形成矩阵

        可以把矩阵看作是:由多个向量并在一起形成的“特殊向量”。矩阵的转置,也就可以看作是对其中每一个向量的转置

        再让输入x点乘权重系数矩阵。分别让输入向量x点乘第一列计算出第一个结果,再让输入向量x点乘第二列计算出第二个结果,两个计算结果组成结果向量。

        再加入偏置向量b

        对于多个函数,仍然可以使用z = x * wt + b表示

(二)Keras框架

        就像机器学习中的高级语言,实现了对机器学习神经网络底层复杂的数学运算的封装。可以轻松地通过它提供的各种上层接口搭建模型

1、Keras实现一个神经元

# 导入keras
from keras.models import Sequential

# 创建模型
model = Sequential()
# 创建一个神经元,使用sigmoid激活函数
# units表示神经元数量,当前隐藏层神经元数量为2
model.add(Dense(units = 2, activation = 'sigmoid', input_dim = 1))
# 创建一个输出层神经元,使用sigmoid激活函数
model.add(Dense(units = 1, activation = 'sigmoid'))
# 告诉keras使用均方误差代价函数 和 随机梯度下降算法(sgd)
model.compile(loss = 'mean_squared_error',
              optimizer = 'sgd',
              metrics = ['accuracy'])

# 开始训练
model.fit(x_train, y_train, epochs = 5, batch_size = 32)

2、存在的问题

  • Kears并不是独立存在的框架,需要通过调用诸如TensorFlow,CNTK 等独立框架实现

  • 封装的过于好,并没有像更加底层的TensorFlow框架那样灵活

  • 高度封装化,流失了对具体细节的控制

二、编程实验1--向量和矩阵构建神经元

(一)编写预测模型--向量版

# 编写预测模型
# 因为有2个树突,所以输入和神经元之间有2个权重参数
W = np.array([0.1, 0.1])
B = np.array([0.1])

(二)前向传播--向量版

# 编写前向传播代码
# 参数X同时包含豆豆的两个特征维度数据
def forward_propagation(X):
    # 向量运算
    # ndarray的dot函数:点乘运算(相乘再相加)
    # ndarray的T属性:转置运算
    Z = X.dot(W.T) + B
    # exp操作也有广播机制,让此运算发生在每个元素上,1除以它们,依旧是广播效果
    # 最终结果仍旧是一个向量
    # Z:[w1x11 + w2x12 + b]
    # 结果A也是一个单元素的向量
    A = 1 / (1 + np.exp(-Z))
    return A

(三)反向传播--向量版

for _ in range(5000):
    for i in range(num):
        # 一行两列,表示一个豆豆的大小和深浅的数据特征
        Xi = X[i]
        Yi = Y[i]
        # 最终返回的A向量,也就一行一列
        A = forward_propagation(Xi)
        # A是一行一列,Y是一个数子,也就是一行一列
        # 误差e结果仍然为一行一列
        E = (Yi - A)**2

        # 一行一列
        dEdA = -2 * (Yi - A)
        # 一行一列
        dAdZ = A * (1 - A)
        # 一行两列
        dZdW = Xi
        # 一行一列
        dZdB = 1

        # 链式求导
        # 一行两列,恰好表示误差在这个两个权重系数上的导数
        dEdW = dEdA * dAdZ * dZdW
        dEdB = dEdA * dAdZ * dZdW

        alpha = 0.01
        W = W - alpha * dEdW
        B = B - alpha * dEdB

 (四)绘图

plot_utils.show_scatter_surface(X, Y, forward_propgation)

三、编程实验2--使用Keras实现学过的神经网络模型

(一)输入数据特征维度为1,仅使用激活函数激活,区间0,1表示有毒/无毒概率的数据集

1、使用Keras搭建神经网络

  • units表示这一层有几个神经元
  • activation表示指定的激活函数类型
  • input_dim输入数据的特征维度,此处只有豆豆的大小这1个特征
  • loss均方误差代价函数,损失函数和代价函数一般都认为是同一种东西
  • optimizer优化器:用来优化 or 调整参数的算法,sgd:随机梯度下降算法
  • metrics:训练时希望得到的评估标准,accuracy准确度
# 使用Keras搭建神经网络模型
# 创建一个Sequential,将神经元堆叠在一起组成一个网络预测模型
model = Sequential()
# 创建全连接层
# 指定参数,units表示这一层有几个神经元;activation表示指定的激活函数类型
# input_dim输入数据的特征维度,此处只有豆豆的大小这1个特征
dense = Dense(units=1, activation='sigmoid', input_dim=1)
# 将全连接层Dense堆叠到序列上
model.add(dense)
# 配置模型
# 均方误差代价函数,损失函数和代价函数一般都认为是同一种东西
model.compile(loss='mean_squared_error',
              # 优化器:用来优化 or 调整参数的算法,sgd:随机梯度下降算法
              optimizer='sgd',
              # metrics:训练时希望得到的评估标准,accuracy准确度
              metrics=['accuracy'])

2、模型训练

  • epochs训练的回合数,在全体样本完成一次训练称为一个回合
  • batch_size每一次训练使用的样本数量
# 开始训练
# epochs训练的回合数,在全体样本完成一次训练称为一个回合
# 每一次训练使用的样本数量batch_size
model.fit(X, Y, epochs=5000, batch_size=10)

3、模型预测

# 对训练好的模型进行预测
pres = model.predict(X)

4、绘图

# 同时绘制散点图和预测曲线
plot_utils.show_scatter_curve(X, Y, pres)

(二)加入隐藏层,使得函数富有多样的单调性

1、修改为2个神经元(隐藏层),并添加输出层神经元

# 指定参数,units表示这一层有几个神经元;activation表示指定的激活函数类型
# input_dim输入数据的特征维度,此处只有豆豆的大小这1个特征
dense = Dense(units=2, activation='sigmoid', input_dim=1)
# 输出层的神经元
dense2 = Dense(units=1, activation='sigmoid')
# 将全连接层Dense堆叠到序列上
model.add(dense)
model.add(dense2)

2、调整学习率

model.compile(loss='mean_squared_error',
              # SGD优化器默认学习率为0.01,我们使用创建对象的方式,设定其学习率为0.05
              optimizer=SGD(lr=0.05),
              # metrics:训练时希望得到的评估标准,accuracy准确度
              metrics=['accuracy'])

3、绘图

plot_utils.show_scatter_curve(X, Y, pres)

(三)两个特征维度的输入数据,简单的线性可分情况

1、指定输入数据维度2,单神经元

dense = Dense(units=1, activation='sigmoid', input_dim=2)
model.add(dense)

2、绘制三维空间图形 

plot_utils.show_scatter_surface(X, Y, model)

(四)两个特征维度的输入数据,加入隐藏层,扭曲预测曲面和分割线

1、指定输入数据维度2,修改为2个神经元(隐藏层),并添加输出层神经元

dense = Dense(units=2, activation='sigmoid', input_dim=2)
# 输出层的神经元
dense2 = Dense(units=1, activation='sigmoid')
# 将全连接层Dense堆叠到序列上
model.add(dense)
model.add(dense2)

2、绘制三维空间图形

plot_utils.show_scatter_surface(X, Y, model)

  • 28
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
波士顿房价数据集是由1978年美国波士顿与周边地区房屋的信息所构成的数据集。在这个数据集中,我们可以得到包括犯罪率、平均房间数、房屋离工作区中心的距离以及社区中收入中位数等以及14个特征。这些特征将用来预测所对应的房屋价格中位数。 当我们要用神经网络去处理这些数据时,我们需要将数据进行预处理来消除数据的差异性,有可能会进行归一化操作。然后使用 tf.keras 库来搭建神经网络模型,利用包含输入数据和输出数据的训练集对模型进行训练和优化。最终目标是使得神经网络模型能够预测新输入数据的输出数据。 使用 tf.keras 搭建神经网络模型时,我们需要选择合适的激活函数、损失函数以及优化器。常用的优化器包括Adam、SGD、Adadelta等方法。我们需要根据实际情况来选择合适的优化器。常用的激活函数包括ReLU、Sigmoid、Tanh等方法。损失函数的选择也比较关键,常用的损失函数有均方误差、交叉熵等方法。我们可以通过比较模型对不同损失函数的结果来选择最优的损失函数。 在模型训练过程中,我们可以通过监测模型的性能来对模型进行调整,监测指标包括训练集和测试集的准确度、损失等参数。当我们发现模型出现过拟合或者欠拟合等问题时,可以通过增加训练数据、减小网络规模、增加正则化项等方法来改善模型的性能。 总结来说,在使用 tf.keras搭建神经网络模型时,需要经过以下步骤:数据预处理、选择适当的激活函数、损失函数和优化器、模型训练参数调整等等。在实际应用中,我们可能需要通过不断尝试调整模型,从而得到最优的模型参数。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Star_KeyW

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值