如何利用tf.keras 实现深度学习?

tf.keras是TensorFlow2.0的高阶API,简化了代码编写。常用模块包括数据输入、模型构建、训练、评估和预测。模型训练涉及编译、fit方法,评估使用evaluate,预测用predict。回调函数如ModelCheckpoint和EarlyStopping能控制训练过程。模型的权重和完整结构可保存及恢复。
摘要由CSDN通过智能技术生成

tf.keras是TensorFlow 2.0的高阶API接口,为TensorFlow的代码提供了新的风格和设计模式,大大提升了TF代码的简洁性和复用性,官方也推荐使用tf.keras来进行模型设计和开发。

tf.keras是什么

常用模块

tf.keras中常用模块如下表所示:

在这里插入图片描述

常用方法

深度学习实现的主要流程:1.数据获取,2,数据处理,3.模型创建与训练,4 模型测试与评估,5.模型预测。

深度学习常用方法

1.导入tf.keras

使用 tf.keras,首先需要在代码开始时导入tf.keras。

import tensorflow as tf
from tensorflow import keras

2.数据输入

对于小的数据集,可以直接使用numpy格式的数据进行训练、评估模型,对于大型数据集或者要进行跨设备训练时使用tf.data.datasets来进行数据输入。

3.模型构建

简单模型使用Sequential进行构建
复杂模型使用函数式编程来构建
自定义layers

4.训练与评估

配置训练过程:

# 配置优化方法,损失函数和评价指标
model.compile(optimizer=tf.train.AdamOptimizer(0.001),
              loss='categorical_crossentropy',
              metrics=['accuracy'])

模型训练:

# 指明训练数据集,训练epoch,批次大小和验证集数据model.fit/fit_generator(dataset, epochs=10, 
                        batch_size=3,
          validation_data=val_dataset,
          )

模型评估:

# 指明评估数据集和批次大小
model.evaluate(x, y, batch_size=32)

模型预测:

# 对新的样本进行预测
model.predict(x, batch_size=32)

5.回调函数(callbacks)

回调函数用在模型训练过程中,来控制模型训练行为,可以自定义回调函数,也可使用tf.keras.callbacks 内置的 callback :

ModelCheckpoint:定期保存 checkpoints。 LearningRateScheduler:动态改变学习速率。 EarlyStopping:当验证集上的性能不再提高时,终止训练。 TensorBoard:使用 TensorBoard 监测模型的状态。

6.模型的保存和恢复

只保存参数:

# 只保存模型的权重
model.save_weights('./my_model')
# 加载模型的权重
model.load_weights('my_model')

保存整个模型:

# 保存模型架构与权重在h5文件中
model.save('my_model.h5')
# 加载模型:包括架构和对应的权重
model = keras.models.load_model('my_model.h5')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值