选择苹果还是iphone7?---Monty Hall悖论

个人直觉有时很重要,有时却指引我们做出错误的选择。我相信很多童鞋在面对下面的情景时,可能会犯晕。

假设在你面前有A、B、C三个盒子,其中的两个盒子里面分别装有一个可以食用的苹果,另外一个盒子里面装着现在火热的亮黑iphone 7;在盒子未打开之前,你并不知道哪个盒子里面装的是iphone 7。

游戏规则是:先给你一次选择机会,你可以从三个盒子中任选一个盒子(比如A),在你选择之后,我再从另外的两个盒子中选择一个盒子(比如B)打开,此时,你看到B盒子中装的是苹果;此时,再给你一次选择机会,你可以坚持自己最初的选择(A),也可以选择另外一个盒子(C),如果选择到装iphone 7的盒子,那么恭喜你,你可以获得一部亮黑iphone 7!!!

你会怎么选?是坚持最初的选择,还是改变最初的选择?这就是著名的Monty Hall悖论。

有些童鞋可能会想:不管怎么选,得到iphone 7的概率不都是1/3吗?难道不是?在给出解释之前,我先给一个实验结果,实验程序在我的github上有python源码(感兴趣的童鞋可以下载到自己机器上实验看看结果,结果可能略有不同),实验结果为:

实验次数\\成功率坚持最初选择的成功率改变选择的成功率
1000.30.7
2000.340.66
3000.340.66
4000.320.68
5000.3180.682
6000.34830.6517
7000.30430.6957
8000.34750.6525
9000.31670.6833
10000.330.67
20000.3380.662
50000.32780.6722
100000.33260.6674
200000.33290.6672
500000.33480.6652
1000000.33410.6659

嗯?为什么改变选择的成功率这么高?模拟实验中,改变初始选择后选中iphone 7的概率是坚持最初选择的两倍。为什么呢?

这其中的玄机在于我,我是知道三个盒子中装的具体内容的。在你最初选择之后,正是我打开了一个装有苹果的盒子,再次给你选择机会,才让你成功选中iphone 7的几率可能提高一倍(当你改变最初选择时)。如果你有些犯晕,下面详细进行解释。

假设你最初选择的是A,我介入时,分为如下几种情况:
- 假设iphone 7就在A中,我可以从B或C中,任选一个盒子打开,此时,你看到的必然是一个苹果
- 假设iphone 7在B中,我必然会打开C,你看到的结果是C中的苹果
- 假设ihone 7在C中,我必然会打开B, 同样,你看到的是B中的苹果

在以上三种可能的情况中,你会怎么选?显然,你应该改变初衷,因为改变初衷获得iphone 7的机会是2/3,而坚持初衷的机会则是1/3。

还有一种更简单的解释:你第一次未选择iPhone 7的概率为2/3,即为你未选择的另两个盒子,现在我把这两个盒中的一个翻开,即排除了一个,则选择剩下的那一个为iPhone 7的概率必为2/3。

这个场景其实是当前各大电视娱乐节目经常采用的一个套路,节目设计者遵循的正是Monty Hall悖论,我们往往会看到参选者经常犯晕,始终坚持自己最初的选择,殊不知坚持初始选择极大低降低了获奖的可能。

如果你去参加节目,看完Monty Hall悖论之后,相信你一定会作出正确的选择!!!

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测和分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集和验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)和垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性和可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面和冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注和质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练和验证深度学习模型,以实现脑肿瘤的检测和分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员和开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测和分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断和治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值