选择苹果还是iphone7?---Monty Hall悖论

个人直觉有时很重要,有时却指引我们做出错误的选择。我相信很多童鞋在面对下面的情景时,可能会犯晕。

假设在你面前有A、B、C三个盒子,其中的两个盒子里面分别装有一个可以食用的苹果,另外一个盒子里面装着现在火热的亮黑iphone 7;在盒子未打开之前,你并不知道哪个盒子里面装的是iphone 7。

游戏规则是:先给你一次选择机会,你可以从三个盒子中任选一个盒子(比如A),在你选择之后,我再从另外的两个盒子中选择一个盒子(比如B)打开,此时,你看到B盒子中装的是苹果;此时,再给你一次选择机会,你可以坚持自己最初的选择(A),也可以选择另外一个盒子(C),如果选择到装iphone 7的盒子,那么恭喜你,你可以获得一部亮黑iphone 7!!!

你会怎么选?是坚持最初的选择,还是改变最初的选择?这就是著名的Monty Hall悖论。

有些童鞋可能会想:不管怎么选,得到iphone 7的概率不都是1/3吗?难道不是?在给出解释之前,我先给一个实验结果,实验程序在我的github上有python源码(感兴趣的童鞋可以下载到自己机器上实验看看结果,结果可能略有不同),实验结果为:

实验次数\\成功率坚持最初选择的成功率改变选择的成功率
1000.30.7
2000.340.66
3000.340.66
4000.320.68
5000.3180.682
6000.34830.6517
7000.30430.6957
8000.34750.6525
9000.31670.6833
10000.330.67
20000.3380.662
50000.32780.6722
100000.33260.6674
200000.33290.6672
500000.33480.6652
1000000.33410.6659

嗯?为什么改变选择的成功率这么高?模拟实验中,改变初始选择后选中iphone 7的概率是坚持最初选择的两倍。为什么呢?

这其中的玄机在于我,我是知道三个盒子中装的具体内容的。在你最初选择之后,正是我打开了一个装有苹果的盒子,再次给你选择机会,才让你成功选中iphone 7的几率可能提高一倍(当你改变最初选择时)。如果你有些犯晕,下面详细进行解释。

假设你最初选择的是A,我介入时,分为如下几种情况:
- 假设iphone 7就在A中,我可以从B或C中,任选一个盒子打开,此时,你看到的必然是一个苹果
- 假设iphone 7在B中,我必然会打开C,你看到的结果是C中的苹果
- 假设ihone 7在C中,我必然会打开B, 同样,你看到的是B中的苹果

在以上三种可能的情况中,你会怎么选?显然,你应该改变初衷,因为改变初衷获得iphone 7的机会是2/3,而坚持初衷的机会则是1/3。

还有一种更简单的解释:你第一次未选择iPhone 7的概率为2/3,即为你未选择的另两个盒子,现在我把这两个盒中的一个翻开,即排除了一个,则选择剩下的那一个为iPhone 7的概率必为2/3。

这个场景其实是当前各大电视娱乐节目经常采用的一个套路,节目设计者遵循的正是Monty Hall悖论,我们往往会看到参选者经常犯晕,始终坚持自己最初的选择,殊不知坚持初始选择极大低降低了获奖的可能。

如果你去参加节目,看完Monty Hall悖论之后,相信你一定会作出正确的选择!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值