个人直觉有时很重要,有时却指引我们做出错误的选择。我相信很多童鞋在面对下面的情景时,可能会犯晕。
假设在你面前有A、B、C三个盒子,其中的两个盒子里面分别装有一个可以食用的苹果,另外一个盒子里面装着现在火热的亮黑iphone 7;在盒子未打开之前,你并不知道哪个盒子里面装的是iphone 7。
游戏规则是:先给你一次选择机会,你可以从三个盒子中任选一个盒子(比如A),在你选择之后,我再从另外的两个盒子中选择一个盒子(比如B)打开,此时,你看到B盒子中装的是苹果;此时,再给你一次选择机会,你可以坚持自己最初的选择(A),也可以选择另外一个盒子(C),如果选择到装iphone 7的盒子,那么恭喜你,你可以获得一部亮黑iphone 7!!!
你会怎么选?是坚持最初的选择,还是改变最初的选择?这就是著名的Monty Hall悖论。
有些童鞋可能会想:不管怎么选,得到iphone 7的概率不都是1/3吗?难道不是?在给出解释之前,我先给一个实验结果,实验程序在我的github上有python源码(感兴趣的童鞋可以下载到自己机器上实验看看结果,结果可能略有不同),实验结果为:
实验次数\\成功率 | 坚持最初选择的成功率 | 改变选择的成功率 |
---|---|---|
100 | 0.3 | 0.7 |
200 | 0.34 | 0.66 |
300 | 0.34 | 0.66 |
400 | 0.32 | 0.68 |
500 | 0.318 | 0.682 |
600 | 0.3483 | 0.6517 |
700 | 0.3043 | 0.6957 |
800 | 0.3475 | 0.6525 |
900 | 0.3167 | 0.6833 |
1000 | 0.33 | 0.67 |
2000 | 0.338 | 0.662 |
5000 | 0.3278 | 0.6722 |
10000 | 0.3326 | 0.6674 |
20000 | 0.3329 | 0.6672 |
50000 | 0.3348 | 0.6652 |
100000 | 0.3341 | 0.6659 |
嗯?为什么改变选择的成功率这么高?模拟实验中,改变初始选择后选中iphone 7的概率是坚持最初选择的两倍。为什么呢?
这其中的玄机在于我,我是知道三个盒子中装的具体内容的。在你最初选择之后,正是我打开了一个装有苹果的盒子,再次给你选择机会,才让你成功选中iphone 7的几率可能提高一倍(当你改变最初选择时)。如果你有些犯晕,下面详细进行解释。
假设你最初选择的是A,我介入时,分为如下几种情况:
- 假设iphone 7就在A中,我可以从B或C中,任选一个盒子打开,此时,你看到的必然是一个苹果
- 假设iphone 7在B中,我必然会打开C,你看到的结果是C中的苹果
- 假设ihone 7在C中,我必然会打开B, 同样,你看到的是B中的苹果
在以上三种可能的情况中,你会怎么选?显然,你应该改变初衷,因为改变初衷获得iphone 7的机会是2/3,而坚持初衷的机会则是1/3。
还有一种更简单的解释:你第一次未选择iPhone 7的概率为2/3,即为你未选择的另两个盒子,现在我把这两个盒中的一个翻开,即排除了一个,则选择剩下的那一个为iPhone 7的概率必为2/3。
这个场景其实是当前各大电视娱乐节目经常采用的一个套路,节目设计者遵循的正是Monty Hall悖论,我们往往会看到参选者经常犯晕,始终坚持自己最初的选择,殊不知坚持初始选择极大低降低了获奖的可能。
如果你去参加节目,看完Monty Hall悖论之后,相信你一定会作出正确的选择!!!