
导语
豆瓣是一个提供图书、电影、音乐等文化产品的社区平台,用户可以在上面发表自己的评价和评论,形成一个丰富的文化数据库。本文将介绍如何使用爬虫技术获取豆瓣图书的评分数据,并进行可视化分析,探索不同类型、不同年代、不同地区的图书的评分特征和规律。
概述
本文的主要步骤如下:
- 使用scrapy框架编写爬虫程序,从豆瓣图书网站抓取图书的基本信息和评分数据,保存为csv格式的文件。
- 使用亿牛云爬虫代理服务,提高爬虫效率和稳定性,避免被豆瓣网站屏蔽或封禁。
- 使用pandas库对爬取的数据进行清洗和处理,提取出需要的字段和特征。
- 使用matplotlib库对处理后的数据进行可视化分析,绘制各种类型的图表,展示不同维度的评分分布和关系。
正文
爬虫程序
首先,我们需要编写一个爬虫程序,从豆瓣图书网站抓取图书的基本信息和评分数据。我们使用scrapy框架来实现这个功能,scrapy是一个强大而灵活的爬虫框架,可以方便地定义爬虫规则和处理数据。我们需要定义一个Spider类,继承自scrapy.Spider类,并重写以下方法:
- start_requests:该方法返回一个可迭代对象,包含了爬虫开始时要访问的请求对象。我们可以从豆瓣图书首页开始,获取所有分类的链接,并构造请求对象。
- parse:该方法负责处理start_requests返回的请求对象的响应,并解析出需要的数据或者进一步的请求。我们可以使用scrapy自带的选择器或者BeautifulSoup等第三方库来解析HTML文档,提取出图书列表页的链接,并构造请求对象。
- parse_book:该方法负责处理parse返回的请求对象的响应,并解析出图书详情页的数据。我们可以使用同样的方式来提取出图书的基本信息和评分数据,并将其保存为字典格式。
- close:该方法在爬虫结束时被调用,我们可以在这里将抓取到的数据保存为csv格式的文件。
为了提高爬虫效率和稳定性,我们还需要使用亿牛云爬虫代理服务,该服务提供了大量高质量的代理IP地址,可以帮助我们避免被豆瓣网站屏蔽或封禁。我们只需要在settings.py文件中设置代理服务器的域名、端口、用户名和密码,以及启用中间件HttpProxyMiddleware即可。
首先配置爬虫代理,你可以按照以下步骤在Scrapy项目的settings.py文件中进行配置:
确保已经安装了Scrapy以及相关依赖。然后,打开你的Scrapy项目的settings.py文件,并添加以下配置:
# 启用HttpProxyMiddleware中间件
DOWNLOADER_MIDDLEWARES = {
'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 1,
}
# 设置亿牛云 爬虫代理服务器的配置
HTTPPROXY_AUTH_ENCODING = 'utf-8' # 编码格式
# 亿牛云 爬虫代理服务器的域名、端口、用户名和密码
HTTPPROXY_HOST = 'www.16yun.cn'
HTTPPROXY_PORT = 12345
HTTPPROXY_USER = '16YUN'
HTTPPROXY_PASS = '16IP'
以下是爬虫程序的代码:
# -*- coding: utf-8 -*-
import scrapy
import csv
class DoubanSpider(scrapy.Spider):
name = 'douban'
allowed_domains = ['book.douban.com']
start_urls = ['https://book.douban.com/']
# 定义保存数据的列表
data = []
def start_requests(self):
# 从豆瓣图书首页开始
yield scrapy.Request(url=self.start_urls[0], callback=self.parse)
def parse(self, response):
# 解析首页,获取所有分类的链接
categories = response.xpath('//div[@class="article"]/div[@class="indent"]/table//a')
for category in categories:
# 构造分类页面的请求对象
url = category.xpath('./@href').get()
yield scrapy.Request(url=url, callback=self.parse_book)
def parse_book(self, response):
# 解析分类页面,获取图书列表
books = response.xpath('//li[@class="subject-item"]'

本文介绍使用爬虫技术获取豆瓣图书评分数据并进行可视化分析。先利用scrapy框架编写爬虫程序抓取数据,借助亿牛云爬虫代理提高效率和稳定性;再用pandas库清洗处理数据;最后用matplotlib库进行可视化分析,展示不同维度评分分布和关系。
最低0.47元/天 解锁文章
1376

被折叠的 条评论
为什么被折叠?



