Tensorflow 交叉熵(Cross Entropy)详解

TensorFlow针对分类问题,实现了四个交叉熵函数,分别是
tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.softmax_cross_entropy_with_logits
tf.nn.sparse_softmax_cross_entropy_with_logits
tf.nn.weighted_cross_entropy_with_logits

  1. 数学基础
    1)e ,自然对数ln的底数,是个无理数,e=2.71828…
    2)f(x)=e^x的函数如下:
    在这里插入图片描述
    3)Sigmoid函数由下列公式定义 函数如下:
    在这里插入图片描述
    在这里插入图片描述
    其对x的导数可以用自身表示:
    在这里插入图片描述
    4)均方误差(MSE, mean squared error)
    均方误差(MSE, mean squared error),具体公式为
    在这里插入图片描述
    tf.losses.mean_squared_error()
    tf.losses.mean_squared_error()就是直接计算mse值了。

    a = tf.constant([[4.0, 4.0, 4.0], [3.0, 3.0, 3.0], [1.0, 1.0, 1.0]])
    b = tf.constant([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [2.0, 2.0, 2.0]])
    mse2 = tf.losses.mean_squared_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值