TensorFlow针对分类问题,实现了四个交叉熵函数,分别是
tf.nn.sigmoid_cross_entropy_with_logits
tf.nn.softmax_cross_entropy_with_logits
tf.nn.sparse_softmax_cross_entropy_with_logits
tf.nn.weighted_cross_entropy_with_logits
-
数学基础
1)e ,自然对数ln的底数,是个无理数,e=2.71828…
2)f(x)=e^x的函数如下:
3)Sigmoid函数由下列公式定义 函数如下:
其对x的导数可以用自身表示:
4)均方误差(MSE, mean squared error)
均方误差(MSE, mean squared error),具体公式为
tf.losses.mean_squared_error()
tf.losses.mean_squared_error()就是直接计算mse值了。a = tf.constant([[4.0, 4.0, 4.0], [3.0, 3.0, 3.0], [1.0, 1.0, 1.0]])
b = tf.constant([[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [2.0, 2.0, 2.0]])
mse2 = tf.losses.mean_squared_