#10022. 「一本通 1.3 练习 1」埃及分数

文章讨论了一种在古埃及用于表示有理数的方法,通过单位分数的和。它提出了一个优化问题,寻找最佳的分数表示,其中加数少且最小的分数较大的表示更好。文章介绍了如何使用迭代加深搜索(IDA*)算法来解决这个问题,并给出了代码示例,强调了估值函数和倒序检查的重要性。
摘要由CSDN通过智能技术生成

每日一宏

#define 大法师 dfs

大法师万岁

题目

题目描述

在古埃及,人们使用单位分数的和(形如 1 a \dfrac{1}{a} a1 的,a 是自然数)表示一切有理数。如:
2 3 = 1 2 + 1 6 \dfrac{2}{3} = \dfrac{1}{2} + \dfrac{1}{6} 32=21+61,但不允许 2 3 = 1 3 + 1 3 \dfrac{2}{3} = \dfrac{1}{3} + \dfrac{1}{3} 32=31+31,因为加数中有相同的。对于一个分数 a b \dfrac{a}{b} ba,表示方法有很多种,但是哪种最好呢?首先,加数少的比加数多的好,其次,加数个数相同的,最小的分数越大越好。如:
19 45 = 1 3 + 1 12 + 1 180 19 45 = 1 3 + 1 15 + 1 45 19 45 = 1 3 + 1 18 + 1 30 19 45 = 1 4 + 1 6 + 1 180 19 45 = 1 5 + 1 6 + 1 18 \begin{aligned} \frac{19}{45} &= \frac{1}{3} + \frac{1}{12} + \frac{1}{180}\\ \frac{19}{45} &= \frac{1}{3} + \frac{1}{15} + \frac{1}{45}\\ \frac{19}{45} &= \frac{1}{3} + \frac{1}{18} + \frac{1}{30}\\ \frac{19}{45} &= \frac{1}{4} + \frac{1}{6} + \frac{1}{180}\\ \frac{19}{45} &= \frac{1}{5} + \frac{1}{6} + \frac{1}{18}\\ \end{aligned} 45194519451945194519=31+121+1801=31+151+451=31+181+301=41+61+1801=51+61+181
最好的是最后一种,因为 1 18 \dfrac{1}{18} 181 1 180 , 1 45 , 1 30 , 1 18 \dfrac{1}{180}, \dfrac{1}{45}, \dfrac{1}{30}, \dfrac{1}{18} 1801,451,301,181都大。
注意,可能有多个最优解。如:
59 211 = 1 4 + 1 36 + 1 633 + 1 3798 59 211 = 1 6 + 1 9 + 1 633 + 1 3798 \begin{aligned} \frac{59}{211} &= \frac{1}{4} + \frac{1}{36} + \frac{1}{633} + \frac{1}{3798}\\ \frac{59}{211} &= \frac{1}{6} + \frac{1}{9} + \frac{1}{633} + \frac{1}{3798}\\ \end{aligned} 2115921159=41+361+6331+37981=61+91+6331+37981
由于方法一与方法二中,最小的分数相同,因此二者均是最优解。
给出 a,b,编程计算最好的表达方式。保证最优解满足:最小的分数
≥ 1 1 0 7 \ge \cfrac{1}{10^7} 1071

输入格式

一行两个整数,分别为 a 和 b 的值。

输出格式

输出若干个数,自小到大排列,依次是单位分数的分母。

样例

输入
19 45
输出
5 6 18

思路

这个题和Addtion Chains一样,都是迭代加深搜索(IDA*)
什么时候使用迭代加深搜索呢?当我们没法确定搜索的深度时,我们不得不自己定这个深度,然后通过dfs找到正确的深度

代码详解

#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll a,b;//因为double类型的数组肯定有误差,所以用longlong型的来存分子和分母
ll fm[105];
ll ans[105];//最终要输出的答案数组
int maxl;
ll gcd(ll,ll);
int fs(ll,ll);
bool ml(int);
void copyee(ll,ll,int);
bool dfs(int,int,ll,ll);
int main()
{
	cin>>a>>b;
	maxl=1;
	while(maxl++){//从1开始枚举数列长度
		memset(ans,-1,sizeof(ans));//先都打上标记(-1指未被赋值)
		if(dfs(1,fs(a,b),a,b)){
			break;
		}
	}
	for(int i=1;i<=maxl;i++){//输出答案数组
		cout<<ans[i]<<" ";
	}
	return 0;
}
ll gcd(ll m,ll n){//辗转相除法求最大公因数
	if(n==0){
		return m;
	}
	return gcd(n,m%n);
}
int fs(ll fzz,ll fmm){
	return fmm/fzz+1;
}
bool ml(int l){//估值函数
	for(int i=l;i>=1;i--){//倒搜
		if(fm[i]!=ans[i]){//若当前数列与已求得的数组不一样
			return ans[i]==-1||fm[i]<ans[i];//如果是未被赋值或者是当前数列中的数比答案数组小,都要覆盖掉ans数组
		}
	}
	return false;//与ans数组完全相同,不需要覆盖
}
void copyee(ll to[],ll from[],int l){//将to数组中1~l用from数组覆盖
	for(int i=1;i<=l;i++){
		to[i]=from[i];
	}
}
bool dfs(int l,int afm,ll r_fzz,ll r_fmm){
//l指当前分到哪个数
//afm指上一次分的数的分母
//r_fzz和r_fmm代表了还需要凑出多少分数的分子和分母
	if(l==maxl){//若长度够了
		if(r_fzz!=1){//最后剩下的分数里分子不为一
			return false;//return掉
		}
		fm[l]=r_fmm;//把最后一个分母填进去
		if(ml(l)){
			copyee(ans,fm,l);
		}
		return true;//找到答案及时return
	}
	bool f=false;
	afm=max(afm,fs(r_fzz,r_fmm));
	for(int i=afm;r_fmm*(maxl-l+1)>i*r_fzz;i++){
		fm[l]=i;
		ll fzz=r_fzz*i-r_fmm;
		ll fmm=r_fmm*i;
		ll mg=gcd(fzz,fmm);
		if(dfs(l+1,i+1,fzz/mg,fmm/mg)){
			f=true;
		}
	}
	return f;
}

估值函数

估值函数的作用是判断此时已选择的分母是否符合题意

bool ml(int l){
	for(int i=l;i>=1;i--){//倒搜(想一想,为什么)
		if(fm[i]!=ans[i]){
			return ans[i]==-1||fm[i]<ans[i];
		}
	}
	return false;
}

为什么要倒搜呢?
因为根据题目

加数个数相同的,最小的分数越大越好

但是如果是单纯判断最后一个数的话,最优答案有很多
所以要从后往前搜,要让这倒数第i个数(分母)尽可能小,
这样才得出一个最最优答案

大法师详解

bool dfs(int l,int afm,ll r_fzz,ll r_fmm){
	if(l==maxl){
		if(r_fzz!=1){
			return false;
		}
		fm[l]=r_fmm;
		if(ml(l)){
			copyee(ans,fm,l);
		}
		return true;
	}
	bool f=false;
	afm=max(afm,fs(r_fzz,r_fmm));//想一想,为什么
	for(int i=afm;r_fmm*(maxl-l+1)>i*r_fzz;i++){
		fm[l]=i;
		ll fzz=r_fzz*i-r_fmm;//想一想,为什么
		ll fmm=r_fmm*i;//想一想,为什么
		ll mg=gcd(fzz,fmm);//想一想,为什么
		if(dfs(l+1,i+1,fzz/mg,fmm/mg)){
			f=true;
		}
	}
	return f;
}

从题干中我们可以得知,要输出的答案数组(分母)是递增的

a n s i > a n s i − 1 ans_i>ans_{i-1} ansi>ansi1
所以下一次选数时分母一定要大于之前的分母
也就是从上一次选的分母开始选

r f z z r f m m > 1 i {rfzz\over rfmm}>{1\over i} rfmmrfzz>i1
从而得到
i > r f m m r f z z i>{rfmm\over rfzz} i>rfzzrfmm
但是不可能取到c++默认的向下取整后的值
所以
i > r f m m r f z z + 1 i>{rfmm\over rfzz}+1 i>rfzzrfmm+1
这就是fs函数的作用

int fs(ll fzz,ll fmm){
	return fmm/fzz+1;
}

那么最大选到多少呢?
就像数的划分一样,我们假设剩下的数都选 m a x l − l + 1 i maxl-l+1\over i imaxll+1
因为不可能都选,
所以当 r f z z r f m m > m a x l − l + 1 i {rfzz\over rfmm}>{maxl-l+1\over i} rfmmrfzz>imaxll+1时停止循环
因为除法会出现误差,所以移项得 r f m m ∗ ( m a x l − l + 1 ) > i ∗ r f z z rfmm*(maxl-l+1)>i*rfzz rfmm(maxll+1)>irfzz
i的范围已经确定,
接下来就是让 r f z z r f m m rfzz\over rfmm rfmmrfzz减去 1 i 1\over i i1
怎么模拟分数运算呢?
第一步,通分
r f z z ∗ i r f m m ∗ i − r f m m r f m m ∗ i = r f z z ∗ i − r f m m r f m m ∗ i {rfzz*i\over rfmm*i}-{rfmm\over rfmm*i}={rfzz*i-rfmm\over rfmm*i} rfmmirfzzirfmmirfmm=rfmmirfzzirfmm
第二步,对结果进行约分(找最大公因数mg)
f z z f m m = f z z / m g f m m / m g {fzz\over fmm}={fzz/mg\over fmm/mg} fmmfzz=fmm/mgfzz/mg
再把已化成最简分数的结果送到下一层dfs

if(dfs(l+1,i+1,fzz/mg,fmm/mg)){
	f=true;
}

早晚都得把afm+1,所以这里就先i+1
fzz/mg和fmm/mg是最简分数的分子和分母
在进入循环之前为什么要给afm再赋一遍初值呢?

afm=max(afm,fs(r_fzz,r_fmm));

因为afm是满足上一次的比 r f z z r f m m rfzz\over rfmm rfmmrfzz小的最大分母
所以要想满足这层的条件,需要取此层中fs(r_fzz,r_fmm)与afm的max

小结

这题蒸的是泰恶心辣

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值