pytorch生成一个简单的线性模型

1.准备数据集prepare dataset
2.使用类设计模型design model using Class(inherit from nn.Moudle)
3.构造损失函数和优化器Construct loss and optimizer(using Pytorch API)
4.训练循环Training cycle(forward backward and update)

1.准备数据集prepare dataset

# 导入pytorch包
import torch

# 简单的数据集和对应的label
x_data = torch.tensor([[1.0], [2.0], [3.0]])
y_data = torch.tensor([[2.0], [4.0], [6.0]])

2.使用类设计模型design model using Class

class LinearModel(torch.nn.Module):
    # 构造函数
    def __init__(self):
        super(LinearModel, self).__init__()
        # Linear (in_features: int, out_features: int, bias: bool = True, device=None, dtype=None)
        # 实例化对象
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        # linear是个对象,对象后面加括号,表示创建了一个可调用的对象(callerable)
        y_pred = self.linear(x)
        return y_pred

3.构造损失函数和优化器Construct loss and optimizer

model = LinearModel()
# criterion = torch.nn.MSELoss(size_average=False)
# 使用MSE损失(均方误差损失)作为loss损失
criterion = torch.nn.MSELoss(reduction='sum')
# 优化器使用SGD优化器
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

4.训练循环Training cycle

for epoch in range(1000):
    y_pred = model(x_data)
    # loss是个对象,criterion也是一个对象,对象后面直接接参数相当于调用当前对象的__call__方法
    # 对象后面直接跟参数的前提是这个实例化对象对应的类实现了__call__方法
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())
    # 梯度置0
    optimizer.zero_grad()
    # 反向传播
    loss.backward()
    # 自动更新,根据梯度,所设置的学习率自动更新
    optimizer.step()

print('w = ', model.linear.weight.item())
print('b = ', model.linear.bias.item())

运行结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值