题意:区间[1,n]每次从中抽出一张牌,直到只剩下最外面两张牌。 每次抽牌的得分是被抽到的牌左边所有牌的乘积*被抽到的牌*右边所有牌的乘积,问得分之和最小是多少?
思路:当区间只有三个数a1,a2,a3的时候得分是a1*a2*a3
设ak为最后一次取出来的数,那么最后一次得分只与a1,ak,an有关,把整个区间以k分为两半,那么
dp[1][n]=dp[1][k]+dp[k][n]+a[1]*a[k]*a[n]
得到的转移方程即dp[i][j]=dp[i][k]+dp[k][j]+a[i]*a[k]*a[j] dp[i][j]表示只留下ai,aj的情况下的最小得分
对dp初值处理的不好,注意memset(dp,INF,sizeof(dp))不OK
- 首先求什么设什么,设dp[i][j]为取出中间的牌能得到的最小得分
- 根据题意可知每次区间两端的牌不能动,只能抽出中间的牌,得知区间的最小长度为3
- 我们知道抽出一张牌k的得到是由三部分,两个区间的值组成的。将区间划分为dp[1][k]和dp[k][n],注意因为端点是不取的,所以是这么两个区间
- 根据转移方程会得到更多的部分
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=110;
const int INF=0x3f3f3f3f;
int a[N];
int dp[N][N]; //从第i个到第j个抽掉所有能抽的卡片 的最小score
/*
10 1 50 2
若先抽1 10 50 2 dp[1][4]
*/
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;++i)
{
cin>>a[i];
}
//memset(dp,INF,sizeof(dp));
for(int i=1;i<=n-2;++i)
dp[i][i+2]=a[i]*a[i+1]*a[i+2];
for(int len=3;len<=n;++len)
{
for(int i=1;i+len-1<=n;++i)
{
int j=i+len-1;
dp[i][j]=INF;
for(int k=i+1;k<j;++k)
{
dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);
}
}
}
// for(int i=1;i<=n;++i)
// {
// for(int j=1;j<=n;++j)
// cout<<dp[i][j]<<' ';
// cout<<endl;
// }
cout<<dp[1][n]<<endl;
return 0;
}