【区间dp】poj 1651 Multiplication Puzzle

题意:区间[1,n]每次从中抽出一张牌,直到只剩下最外面两张牌。 每次抽牌的得分是被抽到的牌左边所有牌的乘积*被抽到的牌*右边所有牌的乘积,问得分之和最小是多少?

思路:当区间只有三个数a1,a2,a3的时候得分是a1*a2*a3

设ak为最后一次取出来的数,那么最后一次得分只与a1,ak,an有关,把整个区间以k分为两半,那么

dp[1][n]=dp[1][k]+dp[k][n]+a[1]*a[k]*a[n]

得到的转移方程即dp[i][j]=dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]  dp[i][j]表示只留下ai,aj的情况下的最小得分

dp具体思路

对dp初值处理的不好,注意memset(dp,INF,sizeof(dp))不OK

看了这篇博客后反省一下自己的思维是否到位了

  • 首先求什么设什么,设dp[i][j]为取出中间的牌能得到的最小得分
  • 根据题意可知每次区间两端的牌不能动,只能抽出中间的牌,得知区间的最小长度为3
  • 我们知道抽出一张牌k的得到是由三部分,两个区间的值组成的。将区间划分为dp[1][k]和dp[k][n],注意因为端点是不取的,所以是这么两个区间
  • 根据转移方程会得到更多的部分
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int N=110;
const int INF=0x3f3f3f3f;
int a[N];
int dp[N][N];           //从第i个到第j个抽掉所有能抽的卡片 的最小score
/*
10 1 50 2
若先抽1 10 50 2 dp[1][4]

*/
int main()
{
    int n;
    cin>>n;
    for(int i=1;i<=n;++i)
    {
        cin>>a[i];
    }
    //memset(dp,INF,sizeof(dp));
    for(int i=1;i<=n-2;++i)
        dp[i][i+2]=a[i]*a[i+1]*a[i+2];
    for(int len=3;len<=n;++len)
    {
        for(int i=1;i+len-1<=n;++i)
        {
            int j=i+len-1;
            dp[i][j]=INF;
            for(int k=i+1;k<j;++k)
            {
                    dp[i][j]=min(dp[i][j],dp[i][k]+dp[k][j]+a[i]*a[k]*a[j]);
            }

        }
    }
//    for(int i=1;i<=n;++i)
//    {
//        for(int j=1;j<=n;++j)
//            cout<<dp[i][j]<<' ';
//        cout<<endl;
//    }
    cout<<dp[1][n]<<endl;
    return 0;



}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值