傅利叶变换及频域相关分析的详细推导【一】

1.傅利叶级数

首先从傅利叶级数讲起。傅利叶级数的直观理解借助下图来进行解释。对于图1这样的原始周期信号,它可以分解成3个成谐波关系的正弦信号,如图2、3、4,这3个子信号相加就可以得到原始周期信号。能够表示原始信号的这样一组正弦子信号,就称为傅利叶级数。与原始周期信号的频率相同的分量称为基波,其他分别称为二次、三次等各次谐波。
在这里插入图片描述
如何通过原始信号来求的傅利叶级数呢?最基本的公式是这样的: f ( t ) = a 0 2 + ∑ n = 1 ∞ a n c o s ( n w 0 t ) + ∑ n = 1 ∞ b n s i n ( n w 0 t ) (1.1) f(t)= \frac{a_0}{2} + \displaystyle \sum_{n=1}^\infty a_ncos(nw_0t) + \displaystyle \sum_{n=1}^\infty b_nsin(nw_0t) \tag{1.1} f(t)=2a0+n=1ancos(nw0t)+n=1bnsin(nw0t)(1.1) a n = 2 T ∫ − T 2 T 2 f ( t ) c o s ( n w 0 t ) d t (1.2) a_n = \frac 2T \int _{-\frac T2}^{\frac T2} f(t)cos(nw_0t)dt \tag{1.2} an=T22T2Tf(t)cos(nw0t)dt(1.2) b n = 2 T ∫ − T 2 T 2 f ( t ) s i n ( n w 0 t ) d t (1.3) b_n = \frac 2T \int _{-\frac T2}^{\frac T2} f(t)sin(nw_0t)dt \tag{1.3} bn=T22T2Tf(t)sin(nw0t)dt(1.3) 在介绍了上述公式后,我们得到了周期信号的傅利叶级数。基波与谐波有着各自的幅值和相位,把基波与谐波的频率作为横坐标,y轴选择幅度时,得到的是幅度频谱;y轴选择相位时,得到的是相位频谱。
幅度谱和相位谱
为了表示的方便,可以利用欧拉公式得到指数形式的傅利叶级数。是怎么推导得来的呢?首先我们有如下一组三角函数的替换公式: s i n ( n w 0 t ) = 1 2 j ( e j w 0 t − e − j w 0 t ) (1.4) sin(nw_0t)= \frac{1}{2j}(e^{jw_0t}-e^{-jw_0t}) \tag{1.4} sin(nw0t)=2j1(ejw0tejw0t)(1.4) c o s ( n w 0 t ) = 1 2 ( e j w 0 t + e − j w 0 t ) (1.5) cos(nw_0t)= \frac{1}{2}(e^{jw_0t}+e^{-jw_0t}) \tag{1.5} cos(nw0t)=21(ejw0t+ejw0t)(1.5) 那么求和项就可以表示成: ∑ n = 1 ∞ a n c o s ( n w 0 t ) + ∑ n = 1 ∞ b n s i n ( n w 0 t ) (1.6) \displaystyle \sum_{n=1}^\infty a_ncos(nw_0t) + \displaystyle \sum_{n=1}^\infty b_nsin(nw_0t) \tag{1.6} n=1ancos(nw0t)+n=1bnsin(nw0t)(1.6) = ∑ n = 1 ∞ ( 1 2 ( a n − j b n ) e j n w 0 t + 1 2 ( a n + j b n ) e − j n w 0 t ) (1.7) =\displaystyle \sum_{n=1}^\infty(\frac 12(a_n-jb_n)e^{jnw_0t}+\frac 12(a_n+jb_n)e^{-jnw_0t}) \tag{1.7} =n=1(21(anjbn)ejnw0t+21(an+jbn)ejnw0t)(1.7) 这里的索引是从1到n。我们注意到 a − n = a n a_{-n}=a_n an=an b − n = − b n b_{-n}=-b_n bn=bn。因此 ∑ n = 1 ∞ 1 2 ( a n + j b n ) e − j n w 0 t \displaystyle \sum_{n=1}^\infty\frac 12(a_n+jb_n)e^{-jnw_0t} n=121(an+jbn)ejnw0t又可以表示成 ∑ n = − 1 − ∞ 1 2 ( a n − j b n ) e j n w 0 t \displaystyle \sum_{n=-1}^{-\infty}\frac 12(a_n-jb_n)e^{jnw_0t} n=121(anjbn)ejnw0t。这样就可以和前一项统一起来, f ( t ) f(t) f(t)可以写成: f ( t ) = ∑ n = − ∞ ∞ 1 2 ( a n − j b n ) e j n w 0 t (1.8) f(t)=\displaystyle \sum_{n=-\infty}^{\infty}\frac 12(a_n-jb_n)e^{jnw_0t} \tag{1.8} f(t)=n=21(anjbn)ejnw0t(1.8) F n = 1 2 ( a n − j b n ) F_n=\frac 12(a_n-jb_n) Fn=21(anjbn),那么指数形式的表示方法就显而易见了: f ( t ) = ∑ n = − ∞ ∞ F n e j n w 0 t (1.9) f(t)=\displaystyle \sum_{n=-\infty}^{\infty}F_ne^{jnw_0t} \tag{1.9} f(t)=n=Fnejnw0t(1.9) 得到的 F n F_n Fn为信号的频谱,为什么呢?由于 F n F_n Fn为复数,因此可以写成 F n = ∣ F n ∣ e j ϕ n F_n=|F_n|e^{j\phi_n} Fn=Fnejϕn,其中, t a n ( ϕ n ) = − b n a n tan(\phi_n)=-\frac {b_n}{a_n} tan(ϕn)=anbn,也就是复数的虚部比实部,那么 ϕ n − w \phi_n-w ϕnw就是信号的相位谱了。而 F n F_n Fn的模 ∣ F n ∣ |F_n| Fn 1 2 a 2 + b 2 \frac 12 \sqrt {a^2+b^2} 21a2+b2 ,又因为 F n F_n Fn n n n值从 − ∞ -\infty ∞ \infty ,所以这样表示的是一个双边谱。归纳起来就是,双边谱幅值变为单边谱的一半,相位谱关于原点奇对称。以上便是傅利叶级数相关的主要内容。

2.傅利叶变换

对于周期信号,我们可以对信号进行分解,通过傅利叶级数得到基波和各次谐波。那对于非周期信号呢?自然而然地联想到,非周期信号,其实是周期趋近于无穷大的一个信号。有这样一个规律,基波的频率与原始信号是一致的,设为 w 0 w_0 w0,当原始信号的周期越长,那么 w 0 = 2 π T w_0=\frac {2\pi}{T} w0=T2π反而会变得越小,当周期取到无穷长时,可以将 w 0 w_0 w0视为连续的。因此,不难得出,周期信号的频谱是离散的,而非周期信号的频谱是连续的。下面通过傅利叶级数来推导傅利叶变换的公式。
首先,第1节中式(1.9)介绍了指数形式的傅利叶级数表示方式,其中 F n = 1 2 ( a n − j b n ) F_n=\frac 12(a_n-jb_n) Fn=21(anjbn),结合公式(1.2)和(1.3),可以得到式(2.1): F n = 1 2 ( a n − b n ) = 1 T ∫ − T 2 T 2 f ( t ) ( c o s ( n w 0 t ) − j s i n ( n w 0 t ) ) d t = 1 T ∫ − T 2 T 2 f ( t ) e − j n w 0 t d t F_n=\frac 12(a_n-b_n)=\frac 1T \int _{-\frac T2}^{\frac T2}f(t)(cos(nw_0t)-jsin(nw_0t))dt=\frac 1T \int _{-\frac T2}^{\frac T2}f(t)e^{-jnw_0t}dt Fn=21(anbn)=T12T2Tf(t)(cos(nw0t)jsin(nw0t))dt=T12T2Tf(t)ejnw0tdt 等式两边同时乘以 T T T,得到 F ( n w 0 ) T = 2 π F ( n w 0 ) w 0 = ∫ − T 2 T 2 f ( t ) e − j n w 0 t d t F(nw_0)T=\frac {2 \pi F(nw_0)}{w_0}=\int _{-\frac T2}^{\frac T2}f(t)e^{-jnw_0t}dt F(nw0)T=w02πF(nw0)=2T2Tf(t)ejnw0tdt。当 T T T趋近于 ∞ \infty 时, w 0 w_0 w0非常小,而 n w 0 nw_0 nw0就可以看成是连续的变量 w w w。对该式取极限,并将其记为 F ( w ) F(w) F(w) F ( w ) = lim ⁡ T → ∞ F ( n w 0 ) T = lim ⁡ w 0 → 0 2 π F ( n w 0 ) w 0 (2.2) F(w)=\lim _{T \to \infty}F(nw_0)T=\lim _{w_0 \to0}\frac {2\pi F(nw_0)}{w_0} \tag{2.2} F(w)=TlimF(nw0)T=w00limw02πF(nw0)(2.2) 将式中的 lim ⁡ w 0 → 0 F ( n w 0 ) w 0 \lim _{w_0 \to0 }\frac {F(nw_0)}{w_0} limw00w0F(nw0)这一项提取出来,它表示单位频带的频谱值——频谱密度,因此 F ( w ) F(w) F(w)又称为频谱密度函数。现在回到傅利叶变换上来,根据式(2.1)和(2.2),我们可以进一步得到: F ( w ) = lim ⁡ T → ∞ ∫ − T 2 T 2 f ( t ) e − j n w 0 t d t = ∫ − ∞ ∞ f ( t ) e − j w t d t (2.3) F(w)= \lim _{T \to \infty }\int _{-\frac T2}^{\frac T2}f(t)e^{-jnw_0t}dt=\int _{-\infty }^{\infty}f(t)e^{-jwt}dt \tag{2.3} F(w)=Tlim2T2Tf(t)ejnw0tdt=f(t)ejwtdt(2.3) 从而我们就得到了非周期信号的傅利叶变换公式。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值