Pride (思维)

Pride

You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

What is the minimum number of operations you need to make all of the elements equal to 1?


Input

The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.

Output

Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

Examples
Input
5
2 2 3 4 6
Output
5
Input
4
2 4 6 8
Output
-1
Input
3
2 6 9
Output
4
Note

In the first sample you can turn all numbers to 1 using the following 5 moves:

  • [2, 2, 3, 4, 6].
  • [2, 1, 3, 4, 6]
  • [2, 1, 3, 1, 6]
  • [2, 1, 1, 1, 6]
  • [1, 1, 1, 1, 6]
  • [1, 1, 1, 1, 1]

We can prove that in this case it is not possible to make all numbers one using less than 5 moves.


题意:你在给的数字里面选两个数,可以用这两数的最大公约数来替换其中一个,问最少几次可以他们都替换成1,如果无法做成,输出-1,否则输出替换次数。

思路其实可以分两类,如果这n个数字里面含有m个1,那么交换次数就是n-m,因为只要有1,就可以把另一个任意数字换成1,如果没有1,那我们需要求一个最小的把任意一个书换成1的次数m,然后用n-1+m(用m次交换把数组变成了只有一个1的数组,那么有了1个1还有n-1个需要变所以总次数就是n-1+m)。

code:

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int gcd(int a,int b){
    if(b == 0) return a;
    else return gcd(b,a%b);
}
int main(){
    int n;
    int a[5200];
    scanf("%d",&n);
    int cnt = 0;
    for(int i = 1; i <= n; i++){
        scanf("%d",&a[i]);
        if(a[i] == 1) cnt++;
    }
    if(cnt){
        cout << n-cnt << endl;
        return 0;
    }
    int mint = 99999999;
    for(int i = 1; i <= n; i++){
        int x = a[i];
        cnt = 0;
        for(int j = i+1; j <= n; j++){
            cnt++;
            x = gcd(x,a[j]);
            if(x == 1) break;
        }
        if(x == 1)
            mint = min(mint,cnt);
    }
    if(mint == 99999999)
        cout << "-1" << endl;
    else
        cout << n-1+mint << endl;
    return 0;
}

阅读更多

Monkeys' Pride

08-15

DescriptionnnBackground nThere are a lot of monkeys in a mountain. Every one wants to be the monkey king. They keep arguing with each other about that for many years. It is your task to help them solve this problem. nnProblem nMonkeys live in different places of the mountain. Let a point (x, y) in the X-Y plane denote the location where a monkey lives. There are no two monkeys living at the same point. If a monkey lives at the point (x0, y0), he can be the king only if there is no monkey living at such point (x, y) that x>=x0 and y>=y0. For example, there are three monkeys in the mountain: (2, 1), (1, 2), (3, 3). Only the monkey that lives at the point (3,3) can be the king. In most cases, there are a lot of possible kings. Your task is to find out all of them. nInputnnThe input consists of several test cases. In the first line of each test case, there are one positive integers N (1<=N<=50000), indicating the number of monkeys in the mountain. Then there are N pairs of integers in the following N lines indicating the locations of N monkeys, one pair per line. Two integers are separated by one blank. In a point (x, y), the values of x and y both lie in the range of signed 32-bit integer. The test case starting with one zero is the final test case and has no output.nOutputnnFor each test case, print your answer, the total number of the monkeys that can be possible the king, in one line without any redundant spaces.nSample Inputnn3n2 1n1 2n3 3n3n0 1n1 0n0 0n4n0 0n1 0n0 1n1 1n0nSample Outputnn1n2n1

没有更多推荐了,返回首页