Pride (思维)


You have an array a with length n, you can perform operations. Each operation is like this: choose two adjacent elements from a, say x and y, and replace one of them with gcd(x, y), where gcd denotes the greatest common divisor.

What is the minimum number of operations you need to make all of the elements equal to 1?


The first line of the input contains one integer n (1 ≤ n ≤ 2000) — the number of elements in the array.

The second line contains n space separated integers a1, a2, ..., an (1 ≤ ai ≤ 109) — the elements of the array.


Print -1, if it is impossible to turn all numbers to 1. Otherwise, print the minimum number of operations needed to make all numbers equal to 1.

2 2 3 4 6
2 4 6 8
2 6 9

In the first sample you can turn all numbers to 1 using the following 5 moves:

  • [2, 2, 3, 4, 6].
  • [2, 1, 3, 4, 6]
  • [2, 1, 3, 1, 6]
  • [2, 1, 1, 1, 6]
  • [1, 1, 1, 1, 6]
  • [1, 1, 1, 1, 1]

We can prove that in this case it is not possible to make all numbers one using less than 5 moves.




#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
int gcd(int a,int b){
    if(b == 0) return a;
    else return gcd(b,a%b);
int main(){
    int n;
    int a[5200];
    int cnt = 0;
    for(int i = 1; i <= n; i++){
        if(a[i] == 1) cnt++;
        cout << n-cnt << endl;
        return 0;
    int mint = 99999999;
    for(int i = 1; i <= n; i++){
        int x = a[i];
        cnt = 0;
        for(int j = i+1; j <= n; j++){
            x = gcd(x,a[j]);
            if(x == 1) break;
        if(x == 1)
            mint = min(mint,cnt);
    if(mint == 99999999)
        cout << "-1" << endl;
        cout << n-1+mint << endl;
    return 0;


Monkeys' Pride


DescriptionnnBackground nThere are a lot of monkeys in a mountain. Every one wants to be the monkey king. They keep arguing with each other about that for many years. It is your task to help them solve this problem. nnProblem nMonkeys live in different places of the mountain. Let a point (x, y) in the X-Y plane denote the location where a monkey lives. There are no two monkeys living at the same point. If a monkey lives at the point (x0, y0), he can be the king only if there is no monkey living at such point (x, y) that x>=x0 and y>=y0. For example, there are three monkeys in the mountain: (2, 1), (1, 2), (3, 3). Only the monkey that lives at the point (3,3) can be the king. In most cases, there are a lot of possible kings. Your task is to find out all of them. nInputnnThe input consists of several test cases. In the first line of each test case, there are one positive integers N (1<=N<=50000), indicating the number of monkeys in the mountain. Then there are N pairs of integers in the following N lines indicating the locations of N monkeys, one pair per line. Two integers are separated by one blank. In a point (x, y), the values of x and y both lie in the range of signed 32-bit integer. The test case starting with one zero is the final test case and has no output.nOutputnnFor each test case, print your answer, the total number of the monkeys that can be possible the king, in one line without any redundant spaces.nSample Inputnn3n2 1n1 2n3 3n3n0 1n1 0n0 0n4n0 0n1 0n0 1n1 1n0nSample Outputnn1n2n1