Redis之BloomFilter避免缓存穿透的利器

在使用Redis的情况下,容易遇到海量的数据需要查重,缓存穿透如何避免之类的问题。其实这些问题都可以通过BloomFilter布隆过滤器来实现

image

Bloom Filter概念

布隆过滤器,是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否存在一个集合中。主要的优点就是空间效率和查询时间都远远超过一般的算法。缺点就是有一定的误识别率和删除比较困难。

Bloom Filter原理

布隆过滤器的基本思想就是:当一个元素被加入集合时,通过K个散列函数将这个元素映射成一个位数组中的K个点,把他们置为1.当检索的时候,我们只需要查看这些点是不是1,就大约知道集合中有没有它;如果有任何一个0,则被检测的元素一定不存在;如果都是1,则大概率存在。

其与单哈希函数Bit-Map不同之处在于:其使用了K个哈希函数,每个字符串都与K个bit对应,从而大大降低了冲突的概率。

缺点

由于Bloom Filter具有在时间和空间上的高效率,是因为舍弃了判断的准确率和删除的便利性

  • 存在误判,查询的元素没有存在容器中,但是恰好hash后的k个位置上都是1,从而造成误判。

    • 解决方式:建立一个名单来存储可能会误判的元素
  • 删除困难:一个放入容器的元素映射到bit数组的k个位置上是1,删除的时候不能简单的直接置为0,可能会影响其他元素的判断

Bloom Filter 实现

布隆过滤器有许多的实现与优化,这里我们介绍由Guava中提供的一种Bloom Filter来进行实现。

在使用布隆过滤器时,绕不开的两点是预估数据量n以及期望的误判率fpp

对应在实现的过程中就是hash函数的选取以及bit数组的大小。

对于一个确定的场景,我们要预估要存的数据量为n,期望的误判率为fpp,然后需要计算我们需要的Bit数组的大小m,以及hash函数的个数k,并选择hash函数

Bit数组大小选择

根据预估数据量n以及误判率fpp,bit数组大小即为:

image

哈希函数选择

根据预估数据量n以及bit数组的长度m,可以得到一个hash函数的个数k:

image

实现

首先需要引入guave包

<dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>23.0</version>
 </dependency>    

下面就是我们测试的核心代码,主要分两步:

  • 往过滤器中插入一百万个数,然后去验证这个一百万个数是否能通过过滤器
  • 然后另外寻找一万个数,去检验漏网之鱼的数量
public class TestBloomFilter {

    private static int total = 1000000;
    private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total);
//    private static BloomFilter<Integer> bf = BloomFilter.create(Funnels.integerFunnel(), total, 0.001);

    public static void main(String[] args) {
        // 初始化1000000条数据到过滤器中
        for (int i = 0; i < total; i++) {
            bf.put(i);
        }

        // 匹配已在过滤器中的值,是否有匹配不上的
        for (int i = 0; i < total; i++) {
            if (!bf.mightContain(i)) {
                System.out.println("有的逃脱了");
            }
        }

        // 匹配不在过滤器中的10000个值,有多少匹配出来
        int count = 0;
        for (int i = total; i < total + 10000; i++) {
            if (bf.mightContain(i)) {
                count++;
            }
        }
        System.out.println("误伤的数量:" + count);
    }

}

结果:

image

通过运行结果我们可以得知,遍历这一百万个在过滤器中的数时,都被识别出来了,而一万个不在过滤器中的数中,有320个被识别成在过滤器中。误判率为三个百分点。

布隆过滤器create函数

通过上面的例子我们通过creat方法来创建过滤器,那我们就来看下create的源码:

 @VisibleForTesting
    static <T> BloomFilter<T> create(Funnel<? super T> funnel, long expectedInsertions, double fpp, BloomFilter.Strategy strategy) {
        Preconditions.checkNotNull(funnel);
        Preconditions.checkArgument(expectedInsertions >= 0L, "Expected insertions (%s) must be >= 0", expectedInsertions);
        Preconditions.checkArgument(fpp > 0.0D, "False positive probability (%s) must be > 0.0", fpp);
        Preconditions.checkArgument(fpp < 1.0D, "False positive probability (%s) must be < 1.0", fpp);
        Preconditions.checkNotNull(strategy);
        if (expectedInsertions == 0L) {
            expectedInsertions = 1L;
        }

        long numBits = optimalNumOfBits(expectedInsertions, fpp);
        int numHashFunctions = optimalNumOfHashFunctions(expectedInsertions, numBits);

        try {
            return new BloomFilter(new LockFreeBitArray(numBits), numHashFunctions, funnel, strategy);
        } catch (IllegalArgumentException var10) {
            throw new IllegalArgumentException("Could not create BloomFilter of " + numBits + " bits", var10);
        }
    }

虽然重载了四个create方法,但是最终都是走的第四个,其中每个参数的含义如下:

  • funnel:数据类型(一般是调用Funnels工具类)
  • expectedInsertions:期望插入的值的个数
  • fpp:错误率(默认0.03)
  • strategy:哈希算法Bloom Filter的应用

​ 通常来说,错误率越大,所需空间和时间越小,错误率越小,所需的空间和时间越大。

最后

  • 如果觉得看完有收获,希望能给我点个赞,这将会是我更新的最大动力,感谢各位的支持
  • 欢迎各位关注我的公众号【java冢狐】,专注于java和计算机基础知识,保证让你看完有所收获,不信你打我
  • 如果看完有不同的意见或者建议,欢迎多多评论一起交流。感谢各位的支持以及厚爱。

image

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值