基础知识
基础知识学习记录
isunLt
这个作者很懒,什么都没留下…
展开
-
python memoryview 简要理解
最近要用到sklearn.neighbor.KDTree,它有一个attribute是data是指构造KDTree数据的memoryview。简单使用后发现memoryview有点像C里的指针import numpy as npfrom sklearn.neighbors import KDTreefrom time import timeif __name__ == '__main__': pts = np.random.randn(10, 3) print("pts:", pt原创 2020-12-26 15:58:00 · 505 阅读 · 2 评论 -
Makefile相关
如何忽略某个文件夹下的指定文件参考链接FILES := $(wildcard $(PATH)/src/*.cc) # 获取文件夹下的所有文件SRC_FILES += $(filter-out $(PATH)/src/a.cc $(PATH)/src/b.cc, $(FILES)) # 使用filter-out过滤a.cc/b.cc如何包含指定头文件# 相对路径是以makefile所在文件夹为起点的-I "$(include_dir_path)/a.h" # 包含include_dir_path原创 2020-11-17 16:30:06 · 126 阅读 · 0 评论 -
自信息、信息熵、互信息
一、自信息在信息论中,是指与概率空间中的单一事件或者离散随机变量的值相关的信息量的量度。简而言之,就是一个事件发生时传达出的信息量。原创 2020-10-16 00:17:45 · 2823 阅读 · 0 评论 -
从交叉熵(CrossEntropy)到交叉熵损失函数(CrossEntropy Loss)
从交叉熵(CrossEntropy)到交叉熵损失函数(CrossEntropy Loss)所谓交叉熵,这篇文章《什么是交叉熵》讲的很明白。设X是预测分布,Y是真实分布,交叉熵H(X, Y)的表达式为:H(X,Y)=−∑iY[i]logX[i] H(X,Y)=-\sum_i Y[i]\log X[i] H(X,Y)=−i∑Y[i]logX[i]其中logloglog表示自然对数,以eee为底数,不是10为底数。再看到Pytorch Document中对交叉熵损失函数的描述为:loss(X,cla原创 2020-09-30 17:27:17 · 356 阅读 · 0 评论 -
Pytorch中nn.Conv2d数据计算模拟
Pytorch中nn.Conv2d数据计算模拟最近在研究dgcnn网络的源码,其网络架构部分使用的是nn.Conv2d模块。在Pytorch的官方文档中,nn.Conv2d的输入数据为(B, Cin, W, H) 其中B为batch_size表示batch的大小,Cin为输入数据的特征大小(通道数),W、H对于图像数据来说分别表示图像数据的宽和高。输出数据为(B, Cout, W', H')其中...原创 2020-04-03 23:02:15 · 1006 阅读 · 0 评论 -
Git基本使用方法
Git使用方法读研了还不会用git,实属不方便。简单记录一下。Git仓库结构工作目录 <-> 暂存区 <-> 本地仓库 <-> 远程仓库在工作目录不在暂存区的文件为未跟踪的文件(untracked files),在暂存区不在本地仓库的文件为未staged文件(unstaged files),在本地仓库不在远程仓库的文件为未提交文件(uncommited files)工作流程工作目录->暂存区git add [ param] < filename&原创 2020-08-24 16:47:08 · 202 阅读 · 0 评论 -
np.indices函数使用方法
np.indices函数使用方法官方文档中说明,np.indices函数的作用是返回一个代表网格中所有序号的矩阵。具体而言,import numpy as np# 定义矩阵A和BA = np.random.randint(0,100,(2,3))B = np.random.randint(0,100,(2,3,4))# A.shape为(2,3)是一个二维矩阵,因此idx_A.shape为(2,2,3),因为A中每个元素需要2个序号指示位置#同理B.shape为(2,3,4)是一个三维矩阵,原创 2020-07-27 21:00:29 · 6962 阅读 · 0 评论