Q: Divide two integers without using multiplication, division and mod operator. If it is overflow, return MAX_INT.
分析:设被除数为p,除数为q.则有:
p = q * (1+2+4+...+ 2^(exp2-1)) + new_p
每一轮循环除数翻倍增加:q=q+q,p=p-q直到最后的p小于除数q,此时被除数还剩new_p.
将(new_p,q)进行递归操作.
递归的出口是:p=0.
注意:需要注意的是,int类型范围是[-2^31, 2^31-1],最高位为补码形式符号位!
当被除数p=-2^(31)=0x1<<31时,divide(-2^31, -1) = 2^31 - 1!! 0x1<<31默认int类型,值为-2^31.
class Solution {
public:
int divide(long long dividend, long long divisor) {
int exp2 = 0;
long long ret;
long long p = abs(dividend), q = abs(divisor);
if(p < q) //递归出口
return 0;
while(p - q >= 0){
p -= q;
q = q + q;
exp2++;
}
ret = divide(p, abs(divisor)); //figure out new_p
ret += (0x1 << exp2) - 1;
if(dividend < 0 && divisor > 0 || dividend > 0 && divisor < 0)
ret = -ret;
if(ret >= (unsigned int)(0x1<<31)) --ret;
return ret;
}
};